A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 671-694
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study the condition on expanding an analytic several variables function in terms of products of the homogeneous generalized Al-Salam-Carlitz polynomials. As applications, we deduce bilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. We also gain multilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. Moreover, we obtain generalizations of Andrews-Askey integrals and Ramanujan $q$-beta integrals. At last, we derive $U(n+1)$ type generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials.
We study the condition on expanding an analytic several variables function in terms of products of the homogeneous generalized Al-Salam-Carlitz polynomials. As applications, we deduce bilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. We also gain multilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. Moreover, we obtain generalizations of Andrews-Askey integrals and Ramanujan $q$-beta integrals. At last, we derive $U(n+1)$ type generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials.
DOI :
10.21136/CMJ.2018.0470-17
Classification :
05A30, 11B65, 33D15, 33D45, 33D50, 35C11
Keywords: $q$-partial difference equation; homogeneous generalized Al-Salam-Carlitz polynomial; generating function; Andrews-Askey integral; Ramanujan $q$-beta integral
Keywords: $q$-partial difference equation; homogeneous generalized Al-Salam-Carlitz polynomial; generating function; Andrews-Askey integral; Ramanujan $q$-beta integral
@article{10_21136_CMJ_2018_0470_17,
author = {Niu, Da-Wei and Cao, Jian},
title = {A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals},
journal = {Czechoslovak Mathematical Journal},
pages = {671--694},
year = {2019},
volume = {69},
number = {3},
doi = {10.21136/CMJ.2018.0470-17},
mrnumber = {3989274},
zbl = {07088812},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0470-17/}
}
TY - JOUR AU - Niu, Da-Wei AU - Cao, Jian TI - A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals JO - Czechoslovak Mathematical Journal PY - 2019 SP - 671 EP - 694 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0470-17/ DO - 10.21136/CMJ.2018.0470-17 LA - en ID - 10_21136_CMJ_2018_0470_17 ER -
%0 Journal Article %A Niu, Da-Wei %A Cao, Jian %T A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals %J Czechoslovak Mathematical Journal %D 2019 %P 671-694 %V 69 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0470-17/ %R 10.21136/CMJ.2018.0470-17 %G en %F 10_21136_CMJ_2018_0470_17
Niu, Da-Wei; Cao, Jian. A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 671-694. doi: 10.21136/CMJ.2018.0470-17
Cité par Sources :