Keywords: $q$-partial difference equation; homogeneous generalized Al-Salam-Carlitz polynomial; generating function; Andrews-Askey integral; Ramanujan $q$-beta integral
@article{10_21136_CMJ_2018_0470_17,
author = {Niu, Da-Wei and Cao, Jian},
title = {A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals},
journal = {Czechoslovak Mathematical Journal},
pages = {671--694},
year = {2019},
volume = {69},
number = {3},
doi = {10.21136/CMJ.2018.0470-17},
mrnumber = {3989274},
zbl = {07088812},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0470-17/}
}
TY - JOUR AU - Niu, Da-Wei AU - Cao, Jian TI - A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals JO - Czechoslovak Mathematical Journal PY - 2019 SP - 671 EP - 694 VL - 69 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0470-17/ DO - 10.21136/CMJ.2018.0470-17 LA - en ID - 10_21136_CMJ_2018_0470_17 ER -
%0 Journal Article %A Niu, Da-Wei %A Cao, Jian %T A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals %J Czechoslovak Mathematical Journal %D 2019 %P 671-694 %V 69 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0470-17/ %R 10.21136/CMJ.2018.0470-17 %G en %F 10_21136_CMJ_2018_0470_17
Niu, Da-Wei; Cao, Jian. A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 671-694. doi: 10.21136/CMJ.2018.0470-17
[1] Abramov, S. A., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear operator equations. Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC'95 A. H. M. Levelt ACM Press, New York (1995), 290-296. | DOI | MR | JFM
[2] Al-Salam, W. A., Carlitz, L.: Some orthogonal $q$-polynomials. Math. Nachr. 30 (1965), 47-61. | DOI | MR | JFM
[3] Andrews, G. E.: Summations and transformations for basic Appell series. J. Lond. Math. Soc., II. Ser. 4 (1972), 618-622. | DOI | MR | JFM
[4] Andrews, G. E.: Applications of basic hypergeometric functions. SIAM Rev. 16 (1974), 441-484. | DOI | MR | JFM
[5] Andrews, G. E., Askey, R.: Another $q$-extension of the beta function. Proc. Am. Math. Soc. 81 (1981), 97-100. | DOI | MR | JFM
[6] Askey, R.: Two integrals of Ramanujan. Proc. Am. Math. Soc. 85 (1982), 192-194. | DOI | MR | JFM
[7] Atakishiyev, N. M., Feinsilver, P.: Two Ramanujan's integrals with a complex parameter. Proceedings of the IV Wigner Symposium 1995 N. M. Atakishiyev et al. World Scientific, Singapore (1996), 406-412. | DOI | MR | JFM
[8] Cao, J.: A note on $q$-integrals and certain generating functions. Stud. Appl. Math. 131 (2013), 105-118. | DOI | MR | JFM
[9] Cao, J.: A note on generalized $q$-difference equations for $q$-beta and Andrews-Askey integral. J. Math. Anal. Appl. 412 (2014), 841-851. | DOI | MR | JFM
[10] Cao, J.: $q$-difference equations for generalized homogeneous $q$-operators and certain generating functions. J. Difference Equ. Appl. 20 (2014), 837-851. | DOI | MR | JFM
[11] Cao, J.: Homogeneous $q$-difference equations and generating functions for $q$-hypergeometric polynomials. Ramanujan J. 40 (2016), 177-192. | DOI | MR | JFM
[12] Carlitz, L.: Generating functions for certain $Q$-orthogonal polynomials. Collect. Math. 23 (1972), 91-104. | MR | JFM
[13] Fang, J.-P.: $q$-difference equation and $q$-polynomials. Appl. Math. Comput. 248 (2014), 550-561. | DOI | MR | JFM
[14] Fang, J.-P.: Remarks on a generalized $q$-difference equation. J. Difference Equ. Appl. 21 (2015), 934-953. | DOI | MR | JFM
[15] Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications 96, Cambridge University Press, Cambridge (2004). | DOI | MR | JFM
[16] Gunning, R. C.: Introduction to Holomorphic Functions of Several Variables Vol. I: Function theory. The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Florence (1990). | DOI | MR | JFM
[17] Ismail, M. E. H.: Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and Its Applications 98, Cambridge University Press, Cambridge (2009). | DOI | MR | JFM
[18] Koekoek, R., Lesky, P. A., Swarttouw, R. F.: Hypergeometric Orthogonal Polynomials and Their $q$-Analogues. Springer Monographs in Mathematics, Springer, Berlin (2010). | DOI | MR | JFM
[19] Koekoek, R., Swarttouw, R. F.: The Askey Scheme of Hypergeometric Orthogonal Polynomials and Its $q$-Analogue. Tech. Rep. 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft (1998).
[20] Liu, Z.-G.: Two $q$-difference equations and $q$-operator identities. J. Difference Equ. Appl. 16 (2010), 1293-1307. | DOI | MR | JFM
[21] Liu, Z.-G.: An extension of the non-terminating $_6\phi_5$ summation and the Askey-Wilson polynomials. J. Difference Equ. Appl. 17 (2011), 1401-1411. | DOI | MR | JFM
[22] Liu, Z.-G.: On the $q$-partial differential equations and $q$-series. The Legacy of Srinivasa Ramanujan B. C. Berndt Ramanujan Mathematical Society Lecture Notes Series 20, Ramanujan Mathematical Society, Mysore (2013), 213-250. | MR | JFM
[23] Liu, Z.-G.: A $q$-extension of a partial differential equation and the Hahn polynomials. Ramanujan J. 38 (2015), 481-501. | DOI | MR | JFM
[24] Liu, Z.-G., Zeng, J.: Two expansion formulas involving the Rogers-Szegő polynomials with applications. Int. J. Number Theory 11 (2015), 507-525. | DOI | MR | JFM
[25] Malgrange, B.: Lectures on the Theory of Functions of Several Complex Variables. Lectures on Mathematics and Physics. Mathematics 13. Tata Institute of Fundamental Research, Bombay; Springer, Berlin (1984). | MR | JFM
[26] Milne, S. C.: Balanced $_3\phi_2$ summation theorems for $U(n)$ basic hypergeometric series. Adv. Math. 131 (1997), 93-187. | DOI | MR | JFM
[27] Wang, M.: A remark on Andrews-Askey integral. J. Math. Anal. Appl. 341 (2008), 1487-1494. | DOI | MR | JFM
[28] Wang, M.: A new probability distribution with applications. Pac. J. Math. 247 (2010), 241-255. | DOI | MR | JFM
[29] Wilf, H. S.: Generatingfunctionology. Academic Press, Boston (1994). | DOI | MR | JFM
[30] Zhang, Z., Liu, M.: Applications of operator identities to the multiple $q$-binomial theorem and $q$-Gauss summation theorem. Discrete Math. 306 (2006), 1424-1437. | DOI | MR | JFM
Cité par Sources :