A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 671-694
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the condition on expanding an analytic several variables function in terms of products of the homogeneous generalized Al-Salam-Carlitz polynomials. As applications, we deduce bilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. We also gain multilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. Moreover, we obtain generalizations of Andrews-Askey integrals and Ramanujan $q$-beta integrals. At last, we derive $U(n+1)$ type generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials.
We study the condition on expanding an analytic several variables function in terms of products of the homogeneous generalized Al-Salam-Carlitz polynomials. As applications, we deduce bilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. We also gain multilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. Moreover, we obtain generalizations of Andrews-Askey integrals and Ramanujan $q$-beta integrals. At last, we derive $U(n+1)$ type generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials.
DOI : 10.21136/CMJ.2018.0470-17
Classification : 05A30, 11B65, 33D15, 33D45, 33D50, 35C11
Keywords: $q$-partial difference equation; homogeneous generalized Al-Salam-Carlitz polynomial; generating function; Andrews-Askey integral; Ramanujan $q$-beta integral
@article{10_21136_CMJ_2018_0470_17,
     author = {Niu, Da-Wei and Cao, Jian},
     title = {A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {671--694},
     year = {2019},
     volume = {69},
     number = {3},
     doi = {10.21136/CMJ.2018.0470-17},
     mrnumber = {3989274},
     zbl = {07088812},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0470-17/}
}
TY  - JOUR
AU  - Niu, Da-Wei
AU  - Cao, Jian
TI  - A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 671
EP  - 694
VL  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0470-17/
DO  - 10.21136/CMJ.2018.0470-17
LA  - en
ID  - 10_21136_CMJ_2018_0470_17
ER  - 
%0 Journal Article
%A Niu, Da-Wei
%A Cao, Jian
%T A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals
%J Czechoslovak Mathematical Journal
%D 2019
%P 671-694
%V 69
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0470-17/
%R 10.21136/CMJ.2018.0470-17
%G en
%F 10_21136_CMJ_2018_0470_17
Niu, Da-Wei; Cao, Jian. A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 3, pp. 671-694. doi: 10.21136/CMJ.2018.0470-17

[1] Abramov, S. A., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear operator equations. Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC'95 A. H. M. Levelt ACM Press, New York (1995), 290-296. | DOI | MR | JFM

[2] Al-Salam, W. A., Carlitz, L.: Some orthogonal $q$-polynomials. Math. Nachr. 30 (1965), 47-61. | DOI | MR | JFM

[3] Andrews, G. E.: Summations and transformations for basic Appell series. J. Lond. Math. Soc., II. Ser. 4 (1972), 618-622. | DOI | MR | JFM

[4] Andrews, G. E.: Applications of basic hypergeometric functions. SIAM Rev. 16 (1974), 441-484. | DOI | MR | JFM

[5] Andrews, G. E., Askey, R.: Another $q$-extension of the beta function. Proc. Am. Math. Soc. 81 (1981), 97-100. | DOI | MR | JFM

[6] Askey, R.: Two integrals of Ramanujan. Proc. Am. Math. Soc. 85 (1982), 192-194. | DOI | MR | JFM

[7] Atakishiyev, N. M., Feinsilver, P.: Two Ramanujan's integrals with a complex parameter. Proceedings of the IV Wigner Symposium 1995 N. M. Atakishiyev et al. World Scientific, Singapore (1996), 406-412. | DOI | MR | JFM

[8] Cao, J.: A note on $q$-integrals and certain generating functions. Stud. Appl. Math. 131 (2013), 105-118. | DOI | MR | JFM

[9] Cao, J.: A note on generalized $q$-difference equations for $q$-beta and Andrews-Askey integral. J. Math. Anal. Appl. 412 (2014), 841-851. | DOI | MR | JFM

[10] Cao, J.: $q$-difference equations for generalized homogeneous $q$-operators and certain generating functions. J. Difference Equ. Appl. 20 (2014), 837-851. | DOI | MR | JFM

[11] Cao, J.: Homogeneous $q$-difference equations and generating functions for $q$-hypergeometric polynomials. Ramanujan J. 40 (2016), 177-192. | DOI | MR | JFM

[12] Carlitz, L.: Generating functions for certain $Q$-orthogonal polynomials. Collect. Math. 23 (1972), 91-104. | MR | JFM

[13] Fang, J.-P.: $q$-difference equation and $q$-polynomials. Appl. Math. Comput. 248 (2014), 550-561. | DOI | MR | JFM

[14] Fang, J.-P.: Remarks on a generalized $q$-difference equation. J. Difference Equ. Appl. 21 (2015), 934-953. | DOI | MR | JFM

[15] Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications 96, Cambridge University Press, Cambridge (2004). | DOI | MR | JFM

[16] Gunning, R. C.: Introduction to Holomorphic Functions of Several Variables Vol. I: Function theory. The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Florence (1990). | DOI | MR | JFM

[17] Ismail, M. E. H.: Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and Its Applications 98, Cambridge University Press, Cambridge (2009). | DOI | MR | JFM

[18] Koekoek, R., Lesky, P. A., Swarttouw, R. F.: Hypergeometric Orthogonal Polynomials and Their $q$-Analogues. Springer Monographs in Mathematics, Springer, Berlin (2010). | DOI | MR | JFM

[19] Koekoek, R., Swarttouw, R. F.: The Askey Scheme of Hypergeometric Orthogonal Polynomials and Its $q$-Analogue. Tech. Rep. 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft (1998).

[20] Liu, Z.-G.: Two $q$-difference equations and $q$-operator identities. J. Difference Equ. Appl. 16 (2010), 1293-1307. | DOI | MR | JFM

[21] Liu, Z.-G.: An extension of the non-terminating $_6\phi_5$ summation and the Askey-Wilson polynomials. J. Difference Equ. Appl. 17 (2011), 1401-1411. | DOI | MR | JFM

[22] Liu, Z.-G.: On the $q$-partial differential equations and $q$-series. The Legacy of Srinivasa Ramanujan B. C. Berndt Ramanujan Mathematical Society Lecture Notes Series 20, Ramanujan Mathematical Society, Mysore (2013), 213-250. | MR | JFM

[23] Liu, Z.-G.: A $q$-extension of a partial differential equation and the Hahn polynomials. Ramanujan J. 38 (2015), 481-501. | DOI | MR | JFM

[24] Liu, Z.-G., Zeng, J.: Two expansion formulas involving the Rogers-Szegő polynomials with applications. Int. J. Number Theory 11 (2015), 507-525. | DOI | MR | JFM

[25] Malgrange, B.: Lectures on the Theory of Functions of Several Complex Variables. Lectures on Mathematics and Physics. Mathematics 13. Tata Institute of Fundamental Research, Bombay; Springer, Berlin (1984). | MR | JFM

[26] Milne, S. C.: Balanced $_3\phi_2$ summation theorems for $U(n)$ basic hypergeometric series. Adv. Math. 131 (1997), 93-187. | DOI | MR | JFM

[27] Wang, M.: A remark on Andrews-Askey integral. J. Math. Anal. Appl. 341 (2008), 1487-1494. | DOI | MR | JFM

[28] Wang, M.: A new probability distribution with applications. Pac. J. Math. 247 (2010), 241-255. | DOI | MR | JFM

[29] Wilf, H. S.: Generatingfunctionology. Academic Press, Boston (1994). | DOI | MR | JFM

[30] Zhang, Z., Liu, M.: Applications of operator identities to the multiple $q$-binomial theorem and $q$-Gauss summation theorem. Discrete Math. 306 (2006), 1424-1437. | DOI | MR | JFM

Cité par Sources :