The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 415-431 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $L$ be a non-negative self-adjoint operator acting on $L^2({\mathbb R}^n)$ satisfying a pointwise Gaussian estimate for its heat kernel. Let $w$ be an $A_r$ weight on ${\mathbb R}^n\times {\mathbb R}^n$, $1
Let $L$ be a non-negative self-adjoint operator acting on $L^2({\mathbb R}^n)$ satisfying a pointwise Gaussian estimate for its heat kernel. Let $w$ be an $A_r$ weight on ${\mathbb R}^n\times {\mathbb R}^n$, $1$. In this article we obtain a weighted atomic decomposition for the weighted Hardy space $H^{p}_{L,w}({\mathbb R}^n\times {\mathbb R}^n)$, $0$ associated to $L$. Based on the atomic decomposition, we show the dual relationship between $H^{1}_{L,w}({\mathbb R}^n\times {\mathbb R}^n)$ and ${\rm BMO}_{L,w}({\mathbb R}^n\times {\mathbb R}^n)$.
DOI : 10.21136/CMJ.2018.0469-16
Classification : 42B30, 42B35, 47F05
Keywords: weighted Hardy space; operator; Gaussian estimate; duality; product space
@article{10_21136_CMJ_2018_0469_16,
     author = {Liu, Suying and Yang, Minghua},
     title = {The weighted {Hardy} spaces associated to self-adjoint operators and their duality on product spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {415--431},
     year = {2018},
     volume = {68},
     number = {2},
     doi = {10.21136/CMJ.2018.0469-16},
     mrnumber = {3819181},
     zbl = {06890380},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0469-16/}
}
TY  - JOUR
AU  - Liu, Suying
AU  - Yang, Minghua
TI  - The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 415
EP  - 431
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0469-16/
DO  - 10.21136/CMJ.2018.0469-16
LA  - en
ID  - 10_21136_CMJ_2018_0469_16
ER  - 
%0 Journal Article
%A Liu, Suying
%A Yang, Minghua
%T The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces
%J Czechoslovak Mathematical Journal
%D 2018
%P 415-431
%V 68
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0469-16/
%R 10.21136/CMJ.2018.0469-16
%G en
%F 10_21136_CMJ_2018_0469_16
Liu, Suying; Yang, Minghua. The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 415-431. doi: 10.21136/CMJ.2018.0469-16

[1] Anh, B. T., Duong, X. T.: Weighted Hardy spaces associated to operators and boundedness of singular integrals. Available at | arXiv

[2] Auscher, P.: On necessary and sufficient conditions for $L^p$-estimates of Riesz transforms associated to elliptic operators on $\mathbb{R}^n$ and related estimates. Mem. Am. Math. Soc. 186 (2007), 75 pages. | DOI | MR | JFM

[3] Auscher, P., Duong, X. T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces. Unpublished preprint (2005).

[4] Auscher, P., Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators I: General operator theory and weights. Adv. Math. 212 (2007), 225-276. | DOI | MR | JFM

[5] Auscher, P., Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators II: Off-diagonal estimates on spaces of homogeneous type. J. Evol. Equ. 7 (2007), 265-316. | DOI | MR | JFM

[6] Auscher, P., Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators III: Harmonic analysis of elliptic operators. J. Funct. Anal. 241 (2006), 703-746. | DOI | MR | JFM

[7] Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18 (2008), 192-248. | DOI | MR | JFM

[8] Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math. Nachr. 283 (2010), 392-442. | DOI | MR | JFM

[9] Bui, H.-Q., Duong, X. T., Yan, L.: Calderón reproducing formulas and new Besov spaces associated with operators. Adv. Math. 229 (2012), 2449-2502. | DOI | MR | JFM

[10] Carleson, L.: A counterexample for measures bounded on $H^p$ for the bi-disc. Mittag Leffler Report 7 (1974).

[11] Chang, S.-Y. A., Fefferman, R.: A continuous version of duality $H^1$ with BMO on the bidisc. Ann. Math. (2) 112 (1980), 179-201. | DOI | MR | JFM

[12] Chang, S.-Y. A., Fefferman, R.: The Calderón-Zygmund decomposition on product domains. Am. J. Math. 104 (1982), 445-468. | DOI | MR | JFM

[13] Chang, S.-Y. A., Fefferman, R.: Some recent developments in Fourier analysis and $H^p$-theory on product domains. Bull. Am. Math. Soc., New Ser. 12 (1985), 1-43. | DOI | MR | JFM

[14] Davies, E. B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics 92, Cambridge University Press, Cambridge (1989). | DOI | MR | JFM

[15] Deng, D., Song, L., Tan, C., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds on product domains. J. Geom. Anal. 17 (2007), 455-483. | DOI | MR | JFM

[16] Duong, X. T., Li, J.: Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. J. Funct. Anal. 264 (2013), 1409-1437. | DOI | MR | JFM

[17] Duong, X. T., MacIntosh, A.: Singular integral operators with non-smooth kernels on irregular domains. Rev. Mat. Iberoam. 15 (1999), 233-265. | DOI | MR | JFM

[18] Duong, X. T., Ouhabaz, E. M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196 (2002), 443-485. | DOI | MR | JFM

[19] Duong, X. T., Xiao, J., Yan, L.: Old and new Morrey spaces with heat kernel bounds. J. Fourier Anal. Appl. 13 (2007), 87-111. | DOI | MR | JFM

[20] Duong, X. T., Yan, L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18 (2005), 943-973. | DOI | MR | JFM

[21] Fefferman, R.: $A_p$ weights and singular integrals. Am. J. Math. 110 (1988), 975-987. | DOI | MR | JFM

[22] García-Cuerva, J., Francia, J. Rubio de: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies 116, North-Holland, Amsterdam (1985). | DOI | MR | JFM

[23] Gundy, R. F., Stein, E. M.: $H^p$ theory for the poly-disc. Proc. Natl. Acad. Sci. USA 76 (1979), 1026-1029. | DOI | MR | JFM

[24] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Am. Math. Soc. 214 (2011), 78 pages. | DOI | MR | JFM

[25] Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344 (2009), 37-116. | DOI | MR | JFM

[26] Jiang, R., Yang, D.: New Orlicz-Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258 (2010), 1167-1224. | DOI | MR | JFM

[27] Journé, J.-L.: Calderón-Zygmund operators on product spaces. Rev. Mat. Iberoam. 1 (1985), 55-91. | DOI | MR | JFM

[28] Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Am. Math. Soc. 367 (2015), 121-189. | DOI | MR | JFM

[29] Krug, D.: A weighted version of the atomic decomposition for $H^p$ (bi-halfspace). Indian Univ. Math. J. 37 (1988), 277-300. | DOI | MR | JFM

[30] Krug, D., Torchinsky, A.: A weighted version of Journé's lemma. Rev. Math. Iberoam. 10 (1994), 363-378. | DOI | MR | JFM

[31] Liu, S., Song, L.: An atomic decomposition of weighted Hardy spaces associated to self-adjoint operators. J. Funct. Anal. 265 (2013), 2709-2723. | DOI | MR | JFM

[32] Liu, S., Song, L.: The atomic decomposition of weighted Hardy spaces associated to self-adjoint operators on product spaces. J. Math. Anal. Appl. 443 (2016), 92-115. | DOI | MR | JFM

[33] Martell, J. M., Prisuelos-Arribas, C.: Weighted Hardy spaces associated with elliptic operators I: Weighted norm inequalities for conical square functions. Trans. Am. Math. Soc. 369 (2017), 4193-4233. | DOI | MR | JFM

[34] Martell, J. M., Prisuelos-Arribas, C.: Weighted Hardy spaces associated with elliptic operators. Part II: Characterizations of $H^1_L(w)$. Available at\ | arXiv | MR

[35] Ouhabaz, E. M.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series 31, Princeton University Press, Princeton (2005). | DOI | MR | JFM

[36] Sato, S.: Weighted inequalities on product domains. Stud. Math. 92 (1989), 59-72. | DOI | MR | JFM

[37] Song, L., Tan, C., Yan, L.: An atomic decomposition for Hardy spaces associated to Schrödinger operators. J. Aust. Math. Soc. 91 (2011), 125-144. | DOI | MR | JFM

[38] Song, L., Xiao, J., Yan, L.: Preduals of quadratic Campanato spaces associated to operators with heat kernel bounds. Potential Anal. 41 (2014), 849-867. | DOI | MR | JFM

[39] Song, L., Yan, L.: Riesz transforms associated to Schrödinger operators on weighted Hardy spaces. J. Funct. Anal. 259 (2010), 1466-1490. | DOI | MR | JFM

[40] Stein, E. M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Mathematical Series 43, Princeton University Press, Princeton (1993). | MR | JFM

[41] Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces. Lecture Notes in Mathematics 1381, Springer, Berlin (1989). | DOI | MR | JFM

[42] Zhu, X. X.: Atomic decomposition for weighted $H^p$ spaces on product domains. Sci. China, Ser. A 35 (1992), 158-168. | MR | JFM

Cité par Sources :