The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 415-431
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $L$ be a non-negative self-adjoint operator acting on $L^2({\mathbb R}^n)$ satisfying a pointwise Gaussian estimate for its heat kernel. Let $w$ be an $A_r$ weight on ${\mathbb R}^n\times {\mathbb R}^n$, $1$. In this article we obtain a weighted atomic decomposition for the weighted Hardy space $H^{p}_{L,w}({\mathbb R}^n\times {\mathbb R}^n)$, $0$ associated to $L$. Based on the atomic decomposition, we show the dual relationship between $H^{1}_{L,w}({\mathbb R}^n\times {\mathbb R}^n)$ and ${\rm BMO}_{L,w}({\mathbb R}^n\times {\mathbb R}^n)$.
Let $L$ be a non-negative self-adjoint operator acting on $L^2({\mathbb R}^n)$ satisfying a pointwise Gaussian estimate for its heat kernel. Let $w$ be an $A_r$ weight on ${\mathbb R}^n\times {\mathbb R}^n$, $1$. In this article we obtain a weighted atomic decomposition for the weighted Hardy space $H^{p}_{L,w}({\mathbb R}^n\times {\mathbb R}^n)$, $0$ associated to $L$. Based on the atomic decomposition, we show the dual relationship between $H^{1}_{L,w}({\mathbb R}^n\times {\mathbb R}^n)$ and ${\rm BMO}_{L,w}({\mathbb R}^n\times {\mathbb R}^n)$.
DOI :
10.21136/CMJ.2018.0469-16
Classification :
42B30, 42B35, 47F05
Keywords: weighted Hardy space; operator; Gaussian estimate; duality; product space
Keywords: weighted Hardy space; operator; Gaussian estimate; duality; product space
@article{10_21136_CMJ_2018_0469_16,
author = {Liu, Suying and Yang, Minghua},
title = {The weighted {Hardy} spaces associated to self-adjoint operators and their duality on product spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {415--431},
year = {2018},
volume = {68},
number = {2},
doi = {10.21136/CMJ.2018.0469-16},
mrnumber = {3819181},
zbl = {06890380},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0469-16/}
}
TY - JOUR AU - Liu, Suying AU - Yang, Minghua TI - The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces JO - Czechoslovak Mathematical Journal PY - 2018 SP - 415 EP - 431 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0469-16/ DO - 10.21136/CMJ.2018.0469-16 LA - en ID - 10_21136_CMJ_2018_0469_16 ER -
%0 Journal Article %A Liu, Suying %A Yang, Minghua %T The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces %J Czechoslovak Mathematical Journal %D 2018 %P 415-431 %V 68 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0469-16/ %R 10.21136/CMJ.2018.0469-16 %G en %F 10_21136_CMJ_2018_0469_16
Liu, Suying; Yang, Minghua. The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 415-431. doi: 10.21136/CMJ.2018.0469-16
Cité par Sources :