Keywords: annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate
@article{10_21136_CMJ_2018_0466_16,
author = {Feki, Imed and Massoudi, Ameni and Nfata, Houda},
title = {A generalization to the {Hardy-Sobolev} spaces $H^{k,p}$ of an $L^p$-$L^1$ logarithmic type estimate},
journal = {Czechoslovak Mathematical Journal},
pages = {387--414},
year = {2018},
volume = {68},
number = {2},
doi = {10.21136/CMJ.2018.0466-16},
mrnumber = {3819180},
zbl = {06890379},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0466-16/}
}
TY - JOUR
AU - Feki, Imed
AU - Massoudi, Ameni
AU - Nfata, Houda
TI - A generalization to the Hardy-Sobolev spaces $H^{k,p}$ of an $L^p$-$L^1$ logarithmic type estimate
JO - Czechoslovak Mathematical Journal
PY - 2018
SP - 387
EP - 414
VL - 68
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0466-16/
DO - 10.21136/CMJ.2018.0466-16
LA - en
ID - 10_21136_CMJ_2018_0466_16
ER -
%0 Journal Article
%A Feki, Imed
%A Massoudi, Ameni
%A Nfata, Houda
%T A generalization to the Hardy-Sobolev spaces $H^{k,p}$ of an $L^p$-$L^1$ logarithmic type estimate
%J Czechoslovak Mathematical Journal
%D 2018
%P 387-414
%V 68
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0466-16/
%R 10.21136/CMJ.2018.0466-16
%G en
%F 10_21136_CMJ_2018_0466_16
Feki, Imed; Massoudi, Ameni; Nfata, Houda. A generalization to the Hardy-Sobolev spaces $H^{k,p}$ of an $L^p$-$L^1$ logarithmic type estimate. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 387-414. doi: 10.21136/CMJ.2018.0466-16
[1] Alessandrini, G., Piero, L. Del, Rondi, L.: Stable determination of corrosion by a single electrostatic boundary measurement. Inverse Probl. 19 (2003), 973-984. | DOI | MR | JFM
[2] Balinskii, A. A., Novikov, S. P.: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Sov. Math., Dokl. 32 (1985), 228-231. English. Russian original translation from Dokl. Akad. Nauk SSSR 283 1985 1036-1039. | MR | JFM
[3] Babenko, V. F., Kofanov, V. A., Pichugov, S. A.: Inequalities of Kolmogrov type and some their applications in approximation theory. Proceedings of the 3rd International Conference on Functional Analysis and Approximation Theory, Palermo: Circolo Matemàtico di Palermo, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 52 (1998), 223-237. | MR | JFM
[4] Baratchart, L., Mandréa, F., Saff, E. B., Wielonsky, F.: 2D inverse problems for the Laplacian: a meromorphic approximation approach. J. Math. Pures Appl. (9) 86 (2006), 1-41. | DOI | MR | JFM
[5] Baratchart, L., Zerner, M.: On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk. J. Comput. Appl. Math. 46 (1993), 255-269. | DOI | MR | JFM
[6] Brézis, H.: Analyse fonctionnelle. Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris (1983), French. | MR | JFM
[7] Chaabane, S., Feki, I.: Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty}$. C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. | DOI | MR | JFM
[8] Chaabane, S., Fellah, I., Jaoua, M., Leblond, J.: Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems. Inverse Probl. 20 (2004), 47-59. | DOI | MR | JFM
[9] Chalendar, I., Partington, J. R.: Approximation problems and representations of Hardy spaces in circular domains. Stud. Math. 136 (1999), 255-269. | DOI | MR | JFM
[10] Chevreau, B., Pearcy, C. M., Shields, A. L.: Finitely connected domains $G$, representations of $H^{\infty }(G)$, and invariant subspaces. J. Oper. Theory 6 (1981), 375-405. | MR | JFM
[11] Duren, P. L.: Theory of $H^p$ Spaces. Pure and Applied Mathematics 38, Academic Press, New York (1970). | DOI | MR | JFM
[12] Feki, I.: Estimates in the Hardy-Sobolev space of the annulus and stability result. Czech. Math. J. 63 (2013), 481-495. | DOI | MR | JFM
[13] Feki, I., Nfata, H.: On $L^p$-$L^1$ estimates of logarithmic-type in Hardy-Sobolev spaces of the disk and the annulus. J. Math. Anal. Appl. 419 (2014), 1248-1260. | DOI | MR | JFM
[14] Feki, I., Nfata, H., Wielonsky, F.: Optimal logarithmic estimates in the Hardy-Sobolev space of the disk and stability results. J. Math. Anal. Appl. 395 (2012), 366-375. | DOI | MR | JFM
[15] Gaier, D., Pommerenke, C.: On the boundary behavior of conformal maps. Mich. Math. J. 14 (1967), 79-82. | DOI | MR | JFM
[16] Hardy, G. H.: The mean value of the modulus of an analytic function. Lond. M. S. Proc. (2) 14 (1915), 269-277. | DOI | JFM
[17] Hardy, G. H., Landau, E., Littlewood, J. E.: Some inequalities satisfied by the integrals or derivatives of real or analytic functions. Math. Z. 39 (1935), 677-695. | DOI | MR | JFM
[18] Klots, B. E.: Approximation of differentiable functions by functions of large smoothness. Math. Notes 21 (1977), 12-19. English. Russian original translation from Mat. Zametki 21 1977 21-32. | DOI | MR | JFM
[19] Leblond, J., Mahjoub, M., Partington, J. R.: Analytic extensions and Cauchy-type inverse problems on annular domains: stability results. J. Inverse Ill-Posed Probl. 14 (2006), 189-204. | DOI | MR | JFM
[20] Meftahi, H., Wielonsky, F.: Growth estimates in the Hardy--Sobolev space of an annular domain with applications. J. Math. Anal. Appl. 358 (2009), 98-109. | DOI | MR | JFM
[21] Miller, P. D.: Applied Aymptotic Analysis. Graduate Studies in Mathematics 75, American Mathematical Society, Providence (2006). | DOI | MR | JFM
[22] Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. | MR | JFM
[23] Rudin, W.: Analytic functions of class $H_p$. Trans. Am. Math. Soc. 78 (1955), 46-66. | DOI | MR | JFM
[24] Sarason, D.: The $H^p$ spaces of an annulus. Mem. Amer. Math. Soc. 56 (1965), 78 pages. | DOI | MR | JFM
[25] Wang, H.-C.: Real Hardy spaces of an annulus. Bull. Aust. Math. Soc. 27 (1983), 91-105. | DOI | MR | JFM
Cité par Sources :