A dispersion inequality in the Hankel setting
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 227-241
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The aim of this paper is to prove a quantitative version of Shapiro's uncertainty principle for orthonormal sequences in the setting of Gabor-Hankel theory.
The aim of this paper is to prove a quantitative version of Shapiro's uncertainty principle for orthonormal sequences in the setting of Gabor-Hankel theory.
DOI :
10.21136/CMJ.2018.0445-16
Classification :
42C20, 45P05, 94A12
Keywords: time-frequency concentration; windowed Hankel transform; Shapiro's uncertainty principles
Keywords: time-frequency concentration; windowed Hankel transform; Shapiro's uncertainty principles
@article{10_21136_CMJ_2018_0445_16,
author = {Ghobber, Saifallah},
title = {A dispersion inequality in the {Hankel} setting},
journal = {Czechoslovak Mathematical Journal},
pages = {227--241},
year = {2018},
volume = {68},
number = {1},
doi = {10.21136/CMJ.2018.0445-16},
mrnumber = {3783595},
zbl = {06861577},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0445-16/}
}
TY - JOUR AU - Ghobber, Saifallah TI - A dispersion inequality in the Hankel setting JO - Czechoslovak Mathematical Journal PY - 2018 SP - 227 EP - 241 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0445-16/ DO - 10.21136/CMJ.2018.0445-16 LA - en ID - 10_21136_CMJ_2018_0445_16 ER -
Ghobber, Saifallah. A dispersion inequality in the Hankel setting. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 227-241. doi: 10.21136/CMJ.2018.0445-16
Cité par Sources :