Keywords: time-frequency concentration; windowed Hankel transform; Shapiro's uncertainty principles
@article{10_21136_CMJ_2018_0445_16,
author = {Ghobber, Saifallah},
title = {A dispersion inequality in the {Hankel} setting},
journal = {Czechoslovak Mathematical Journal},
pages = {227--241},
year = {2018},
volume = {68},
number = {1},
doi = {10.21136/CMJ.2018.0445-16},
mrnumber = {3783595},
zbl = {06861577},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0445-16/}
}
TY - JOUR AU - Ghobber, Saifallah TI - A dispersion inequality in the Hankel setting JO - Czechoslovak Mathematical Journal PY - 2018 SP - 227 EP - 241 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0445-16/ DO - 10.21136/CMJ.2018.0445-16 LA - en ID - 10_21136_CMJ_2018_0445_16 ER -
Ghobber, Saifallah. A dispersion inequality in the Hankel setting. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 227-241. doi: 10.21136/CMJ.2018.0445-16
[1] Bowie, P. C.: Uncertainty inequalities for Hankel transforms. SIAM J. Math. Anal. 2 (1971), 601-606. | DOI | MR | JFM
[2] Czaja, W., Gigante, G.: Continuous Gabor transform for strong hypergroups. J. Fourier Anal. Appl. 9 (2003), 321-339. | DOI | MR | JFM
[3] Ghobber, S.: Phase space localization of orthonormal sequences in $L_\alpha^2(\Bbb R_+)$. J. Approx. Theory 189 (2015), 123-136. | DOI | MR | JFM
[4] Ghobber, S., Omri, S.: Time-frequency concentration of the windowed Hankel transform. Integral Transforms Spec. Funct. 25 (2014), 481-496. | DOI | MR | JFM
[5] Lamouchi, H., Omri, S.: Time-frequency localization for the short time Fourier transform. Integral Transforms Spec. Funct. 27 (2016), 43-54. | DOI | MR | JFM
[6] Levitan, B. M.: Expansion in Fourier series and integrals with Bessel functions. Uspekhi Matem. Nauk (N.S.) 6 (1951), 102-143 Russian. | MR | JFM
[7] Malinnikova, E.: Orthonormal sequences in $L^2(\Bbb R^d)$ and time frequency localization. J. Fourier Anal. Appl. 16 (2010), 983-1006. | DOI | MR | JFM
[8] Shapiro, H. S.: Uncertainty principles for basis in $L^2(\mathbb R)$. Proc. of the Conf. on Harmonic Analysis and Number Theory, Marseille-Luminy, 2005 CIRM.
Cité par Sources :