A dispersion inequality in the Hankel setting
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 227-241 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to prove a quantitative version of Shapiro's uncertainty principle for orthonormal sequences in the setting of Gabor-Hankel theory.
The aim of this paper is to prove a quantitative version of Shapiro's uncertainty principle for orthonormal sequences in the setting of Gabor-Hankel theory.
DOI : 10.21136/CMJ.2018.0445-16
Classification : 42C20, 45P05, 94A12
Keywords: time-frequency concentration; windowed Hankel transform; Shapiro's uncertainty principles
@article{10_21136_CMJ_2018_0445_16,
     author = {Ghobber, Saifallah},
     title = {A dispersion inequality in the {Hankel} setting},
     journal = {Czechoslovak Mathematical Journal},
     pages = {227--241},
     year = {2018},
     volume = {68},
     number = {1},
     doi = {10.21136/CMJ.2018.0445-16},
     mrnumber = {3783595},
     zbl = {06861577},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0445-16/}
}
TY  - JOUR
AU  - Ghobber, Saifallah
TI  - A dispersion inequality in the Hankel setting
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 227
EP  - 241
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0445-16/
DO  - 10.21136/CMJ.2018.0445-16
LA  - en
ID  - 10_21136_CMJ_2018_0445_16
ER  - 
%0 Journal Article
%A Ghobber, Saifallah
%T A dispersion inequality in the Hankel setting
%J Czechoslovak Mathematical Journal
%D 2018
%P 227-241
%V 68
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0445-16/
%R 10.21136/CMJ.2018.0445-16
%G en
%F 10_21136_CMJ_2018_0445_16
Ghobber, Saifallah. A dispersion inequality in the Hankel setting. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 227-241. doi: 10.21136/CMJ.2018.0445-16

[1] Bowie, P. C.: Uncertainty inequalities for Hankel transforms. SIAM J. Math. Anal. 2 (1971), 601-606. | DOI | MR | JFM

[2] Czaja, W., Gigante, G.: Continuous Gabor transform for strong hypergroups. J. Fourier Anal. Appl. 9 (2003), 321-339. | DOI | MR | JFM

[3] Ghobber, S.: Phase space localization of orthonormal sequences in $L_\alpha^2(\Bbb R_+)$. J. Approx. Theory 189 (2015), 123-136. | DOI | MR | JFM

[4] Ghobber, S., Omri, S.: Time-frequency concentration of the windowed Hankel transform. Integral Transforms Spec. Funct. 25 (2014), 481-496. | DOI | MR | JFM

[5] Lamouchi, H., Omri, S.: Time-frequency localization for the short time Fourier transform. Integral Transforms Spec. Funct. 27 (2016), 43-54. | DOI | MR | JFM

[6] Levitan, B. M.: Expansion in Fourier series and integrals with Bessel functions. Uspekhi Matem. Nauk (N.S.) 6 (1951), 102-143 Russian. | MR | JFM

[7] Malinnikova, E.: Orthonormal sequences in $L^2(\Bbb R^d)$ and time frequency localization. J. Fourier Anal. Appl. 16 (2010), 983-1006. | DOI | MR | JFM

[8] Shapiro, H. S.: Uncertainty principles for basis in $L^2(\mathbb R)$. Proc. of the Conf. on Harmonic Analysis and Number Theory, Marseille-Luminy, 2005 CIRM.

Cité par Sources :