A dispersion inequality in the Hankel setting
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 227-241.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The aim of this paper is to prove a quantitative version of Shapiro's uncertainty principle for orthonormal sequences in the setting of Gabor-Hankel theory.
DOI : 10.21136/CMJ.2018.0445-16
Classification : 42C20, 45P05, 94A12
Keywords: time-frequency concentration; windowed Hankel transform; Shapiro's uncertainty principles
@article{10_21136_CMJ_2018_0445_16,
     author = {Ghobber, Saifallah},
     title = {A dispersion inequality in the {Hankel} setting},
     journal = {Czechoslovak Mathematical Journal},
     pages = {227--241},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2018},
     doi = {10.21136/CMJ.2018.0445-16},
     mrnumber = {3783595},
     zbl = {06861577},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0445-16/}
}
TY  - JOUR
AU  - Ghobber, Saifallah
TI  - A dispersion inequality in the Hankel setting
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 227
EP  - 241
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0445-16/
DO  - 10.21136/CMJ.2018.0445-16
LA  - en
ID  - 10_21136_CMJ_2018_0445_16
ER  - 
%0 Journal Article
%A Ghobber, Saifallah
%T A dispersion inequality in the Hankel setting
%J Czechoslovak Mathematical Journal
%D 2018
%P 227-241
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0445-16/
%R 10.21136/CMJ.2018.0445-16
%G en
%F 10_21136_CMJ_2018_0445_16
Ghobber, Saifallah. A dispersion inequality in the Hankel setting. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 227-241. doi : 10.21136/CMJ.2018.0445-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0445-16/

Cité par Sources :