Convexities of Gaussian integral means and weighted integral means for analytic functions
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 525-543
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We first show that the Gaussian integral means of $f\colon \mathbb {C}\to \mathbb {C}$ (with respect to the area measure ${\rm e}^{-\alpha |z|^{2}} {\rm d} A(z)$) is a convex function of $r$ on $(0,\infty )$ when $\alpha \leq 0$. We then prove that the weighted integral means $A_{\alpha ,\beta }(f,r)$ and $L_{\alpha ,\beta }(f,r)$ of the mixed area and the mixed length of $f(r\mathbb {D})$ and $\partial f(r\mathbb {D})$, respectively, also have the property of convexity in the case of $\alpha \leq 0$. Finally, we show with examples that the range $\alpha \leq 0$ is the best possible.
We first show that the Gaussian integral means of $f\colon \mathbb {C}\to \mathbb {C}$ (with respect to the area measure ${\rm e}^{-\alpha |z|^{2}} {\rm d} A(z)$) is a convex function of $r$ on $(0,\infty )$ when $\alpha \leq 0$. We then prove that the weighted integral means $A_{\alpha ,\beta }(f,r)$ and $L_{\alpha ,\beta }(f,r)$ of the mixed area and the mixed length of $f(r\mathbb {D})$ and $\partial f(r\mathbb {D})$, respectively, also have the property of convexity in the case of $\alpha \leq 0$. Finally, we show with examples that the range $\alpha \leq 0$ is the best possible.
DOI :
10.21136/CMJ.2018.0432-17
Classification :
30H10, 30H20
Keywords: Gaussian integral means; weighted integral means; analytic function; \nobreak convexity
Keywords: Gaussian integral means; weighted integral means; analytic function; \nobreak convexity
@article{10_21136_CMJ_2018_0432_17,
author = {Li, Haiying and Liu, Taotao},
title = {Convexities of {Gaussian} integral means and weighted integral means for analytic functions},
journal = {Czechoslovak Mathematical Journal},
pages = {525--543},
year = {2019},
volume = {69},
number = {2},
doi = {10.21136/CMJ.2018.0432-17},
mrnumber = {3959963},
zbl = {07088803},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0432-17/}
}
TY - JOUR AU - Li, Haiying AU - Liu, Taotao TI - Convexities of Gaussian integral means and weighted integral means for analytic functions JO - Czechoslovak Mathematical Journal PY - 2019 SP - 525 EP - 543 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0432-17/ DO - 10.21136/CMJ.2018.0432-17 LA - en ID - 10_21136_CMJ_2018_0432_17 ER -
%0 Journal Article %A Li, Haiying %A Liu, Taotao %T Convexities of Gaussian integral means and weighted integral means for analytic functions %J Czechoslovak Mathematical Journal %D 2019 %P 525-543 %V 69 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0432-17/ %R 10.21136/CMJ.2018.0432-17 %G en %F 10_21136_CMJ_2018_0432_17
Li, Haiying; Liu, Taotao. Convexities of Gaussian integral means and weighted integral means for analytic functions. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 525-543. doi: 10.21136/CMJ.2018.0432-17
Cité par Sources :