Keywords: harmonic Bergman-Besov space; weighted harmonic Bloch space; Carleson measure; Berezin transform
@article{10_21136_CMJ_2018_0422_17,
author = {Do\u{g}an, \"Omer Faruk and \"Ureyen, Adem Ersin},
title = {Inclusion relations between harmonic {Bergman-Besov} and weighted {Bloch} spaces on the unit ball},
journal = {Czechoslovak Mathematical Journal},
pages = {503--523},
year = {2019},
volume = {69},
number = {2},
doi = {10.21136/CMJ.2018.0422-17},
mrnumber = {3959962},
zbl = {07088802},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0422-17/}
}
TY - JOUR AU - Doğan, Ömer Faruk AU - Üreyen, Adem Ersin TI - Inclusion relations between harmonic Bergman-Besov and weighted Bloch spaces on the unit ball JO - Czechoslovak Mathematical Journal PY - 2019 SP - 503 EP - 523 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0422-17/ DO - 10.21136/CMJ.2018.0422-17 LA - en ID - 10_21136_CMJ_2018_0422_17 ER -
%0 Journal Article %A Doğan, Ömer Faruk %A Üreyen, Adem Ersin %T Inclusion relations between harmonic Bergman-Besov and weighted Bloch spaces on the unit ball %J Czechoslovak Mathematical Journal %D 2019 %P 503-523 %V 69 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0422-17/ %R 10.21136/CMJ.2018.0422-17 %G en %F 10_21136_CMJ_2018_0422_17
Doğan, Ömer Faruk; Üreyen, Adem Ersin. Inclusion relations between harmonic Bergman-Besov and weighted Bloch spaces on the unit ball. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 503-523. doi: 10.21136/CMJ.2018.0422-17
[1] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Graduate Texts in Mathematics 137. Springer, New York (2001). | DOI | MR | JFM
[2] Choe, B. R., Koo, H., Lee, Y.: Positive Schatten class Toeplitz operators on the ball. Studia Math. 189 (2008), 65-90. | DOI | MR | JFM
[3] Choe, B. R., Lee, Y. J.: Note on atomic decompositions of harmonic Bergman functions. Complex Analysis and Its Applications, OCAMI Studies 2 Imayoshi Yoichi et al. Osaka Municipal Universities Press, Osaka (2007), 11-24. | MR | JFM
[4] Choe, B. R., Lee, Y. J., Na, K.: Positive Toeplitz operators from a harmonic Bergman space into another. Tohoku Math. J. 56 (2004), 255-270. | DOI | MR | JFM
[5] Choe, B. R., Lee, Y. J., Na, K.: Toeplitz operators on harmonic Bergman spaces. Nagoya Math. J. 174 (2004), 165-186. | DOI | MR | JFM
[6] Coifman, R. R., Rochberg, R.: Representation theorems for holomorphic and harmonic functions in $L^p$. Astérisque 77 (1980), 11-66. | MR | JFM
[7] Djrbashian, A. E., Shamoian, F. A.: Topics in the Theory of $A^p_\alpha$ Spaces. Teubner Texts in Mathematics, 105, B. G. Teubner, Leipzig (1988). | MR | JFM
[8] Doğan, "{O}. F.: Harmonic Besov spaces with small exponents. Available at | arXiv
[9] Doğan, Ö. F., Üreyen, A. E.: Weighted harmonic Bloch spaces on the ball. Complex Anal. Oper. Theory 12 (2018), 1143-1177. | DOI | MR | JFM
[10] Doubtsov, E.: Carleson-Sobolev measures for weighted Bloch spaces. J. Funct. Anal. 258 (2010), 2801-2816. | DOI | MR | JFM
[11] Gergün, S., Kaptanoğlu, H. T., Üreyen, A. E.: Reproducing kernels for harmonic Besov spaces on the ball. C. R. Math. Acad. Sci. Paris 347 (2009), 735-738. | DOI | MR | JFM
[12] Gergün, S., Kaptanoğlu, H. T., Üreyen, A. E.: Harmonic Besov spaces on the ball. Int. J. Math. 27 (2016), Article ID 1650070, 59 pages. | DOI | MR | JFM
[13] Jevtić, M., Pavlović, M.: Harmonic Bergman functions on the unit ball in $\mathbb R^n$. Acta Math. Hung. 85 (1999), 81-96. | DOI | MR | JFM
[14] Liu, C. W., Shi, J. H.: Invariant mean-value property and $\mathcal M$-harmonicity in the unit ball of $\mathbb R^n$. Acta Math. Sin. 19 (2003), 187-200. | DOI | MR | JFM
[15] Luecking, D. H.: Multipliers of Bergman spaces into Lebesgue spaces. Proc. Edinburgh Math. Soc. 29 (1986), 125-131. | DOI | MR | JFM
[16] Luecking, D. H.: Embedding theorems for spaces of analytic functions via Khinchine's inequality. Michigan Math. J. 40 (1993), 333-358. | DOI | MR | JFM
[17] Miao, J.: Reproducing kernels for harmonic Bergman spaces of the unit ball. Monatsh. Math. 125 (1998), 25-35. | DOI | MR | JFM
[18] Oleinik, V. L., Pavlov, B. S.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Soviet Math. 2 (1974), 135-142 English. Russian original translation from Zap. Nauch. Sem. LOMI Steklov 22 1971 94-102. | DOI | MR | JFM
[19] Ren, G.: Harmonic Bergman spaces with small exponents in the unit ball. Collect. Math. 53 (2002), 83-98. | MR | JFM
[20] Yang, W., Ouyang, C.: Exact location of $\alpha$-Bloch spaces in $L_a^p$ and $H^p$ of a complex unit ball. Rocky Mt. J. Math. 30 (2000), 1151-1169. | DOI | MR | JFM
[21] Zhao, R., Zhu, K.: Theory of Bergman spaces in the unit ball of $\mathbb{C}^n$. Mém. Soc. Math. Fr. 115 (2008), 103 pages. | DOI | MR | JFM
[22] Zygmund, A.: Trigonometric Series. Vol. I, II. Cambridge Mathematical Library, Cambridge University Press, Cambridge (2002). | MR | JFM
Cité par Sources :