On the spectrum of Robin Laplacian in a planar waveguide
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 485-501 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the Laplace operator in a planar waveguide, i.e. an infinite two-dimensional straight strip of constant width, with Robin boundary conditions. We study the essential spectrum of the corresponding Laplacian when the boundary coupling function has a limit at infinity. Furthermore, we derive sufficient conditions for the existence of discrete spectrum.
We consider the Laplace operator in a planar waveguide, i.e. an infinite two-dimensional straight strip of constant width, with Robin boundary conditions. We study the essential spectrum of the corresponding Laplacian when the boundary coupling function has a limit at infinity. Furthermore, we derive sufficient conditions for the existence of discrete spectrum.
DOI : 10.21136/CMJ.2018.0396-17
Classification : 47B25, 47F05, 49R05, 81Q10
Keywords: planar waveguide; discrete spectrum; Robin boundary conditions
@article{10_21136_CMJ_2018_0396_17,
     author = {Rossini, Alex Ferreira},
     title = {On the spectrum of {Robin} {Laplacian} in a planar waveguide},
     journal = {Czechoslovak Mathematical Journal},
     pages = {485--501},
     year = {2019},
     volume = {69},
     number = {2},
     doi = {10.21136/CMJ.2018.0396-17},
     mrnumber = {3959961},
     zbl = {07088801},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0396-17/}
}
TY  - JOUR
AU  - Rossini, Alex Ferreira
TI  - On the spectrum of Robin Laplacian in a planar waveguide
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 485
EP  - 501
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0396-17/
DO  - 10.21136/CMJ.2018.0396-17
LA  - en
ID  - 10_21136_CMJ_2018_0396_17
ER  - 
%0 Journal Article
%A Rossini, Alex Ferreira
%T On the spectrum of Robin Laplacian in a planar waveguide
%J Czechoslovak Mathematical Journal
%D 2019
%P 485-501
%V 69
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0396-17/
%R 10.21136/CMJ.2018.0396-17
%G en
%F 10_21136_CMJ_2018_0396_17
Rossini, Alex Ferreira. On the spectrum of Robin Laplacian in a planar waveguide. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 485-501. doi: 10.21136/CMJ.2018.0396-17

[1] Adams, R. A.: Sobolev Spaces. Pure and Applied Mathematics 65, Academic Press, New York (1975). | DOI | MR | JFM

[2] Borisov, D., Cardone, G.: Planar waveguide with ``twisted'' boundary conditions: Discrete spectrum. J. Math. Phys. 52 (2011), 123513, 24 pages. | DOI | MR | JFM

[3] Borisov, D., Krejčiřík, D.: $\mathcal P\mathcal T$-symmetric waveguides. Integral Equations Oper. Theory 62 (2008), 489-515. | DOI | MR | JFM

[4] Chenaud, B., Duclos, P., Freitas, P., Krejčiřík, D.: Geometrically induced discrete spectrum in curved tubes. Differ. Geom. Appl. 23 (2005), 95-105. | DOI | MR | JFM

[5] Oliveira, C. R. de: Intermediate Spectral Theory and Quantum Dynamics. Progress in Mathematical Physics 54, Birkhäuser, Basel (2009). | DOI | MR | JFM

[6] Oliveira, C. R. de, Verri, A. A.: On the spectrum and weakly effective operator for Dirichlet Laplacian in thin deformed tubes. J. Math. Anal. Appl. 381 (2011), 454-468. | DOI | MR | JFM

[7] Dittrich, J., Kříž, J.: Bound states in straight quantum waveguides with combined boundary conditions. J. Math. Phys. 43 (2002), 3892-3915. | DOI | MR | JFM

[8] Duclos, P., Exner, P.: Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7 (1995), 73-102. | DOI | MR | JFM

[9] Evans, L. C.: Partial Differential Equations. Graduate Studies in Mathematics 19, AMS, Providence (1998). | DOI | MR | JFM

[10] Exner, P., Šeba, P.: Bound states in curved quantum waveguides. J. Math. Phys. 30 (1989), 2574-2580. | DOI | MR | JFM

[11] Freitas, P., Krejčiřík, D.: Waveguides with combined Dirichlet and Robin boundary conditions. Math. Phys. Anal. Geom. 9 (2006), 335-352. | DOI | MR | JFM

[12] Goldstone, J., Jaffe, R. L.: Bound states in twisting tubes. Phys. Rev. B. 45 (1992), 14100-14107. | DOI

[13] Jílek, M.: Straight quantum waveguide with Robin boundary conditions. SIGMA, Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 108, 12 pages. | DOI | MR | JFM

[14] Krejčiřík, D.: Spectrum of the Laplacian in a narrow curved strip with combined Dirichlet and Neumann boundary conditions. ESAIM, Control Optim. Calc. Var. 15 (2009), 555-568. | DOI | MR | JFM

[15] Krejčiřík, D., Kříž, J.: On the spectrum of curved planar waveguides. Publ. Res. Inst. Math. Sci. 41 (2005), 757-791. | DOI | MR | JFM

[16] Olendski, O., Mikhailovska, L.: Theory of a curved planar waveguide with Robin boundary conditions. Phys. Rev. E. 81 (2010), 036606. | DOI

[17] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, New York (1978). | MR | JFM

Cité par Sources :