On the spectrum of Robin Laplacian in a planar waveguide
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 485-501.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the Laplace operator in a planar waveguide, i.e. an infinite two-dimensional straight strip of constant width, with Robin boundary conditions. We study the essential spectrum of the corresponding Laplacian when the boundary coupling function has a limit at infinity. Furthermore, we derive sufficient conditions for the existence of discrete spectrum.
DOI : 10.21136/CMJ.2018.0396-17
Classification : 47B25, 47F05, 49R05, 81Q10
Keywords: planar waveguide; discrete spectrum; Robin boundary conditions
@article{10_21136_CMJ_2018_0396_17,
     author = {Rossini, Alex Ferreira},
     title = {On the spectrum of {Robin} {Laplacian} in a planar waveguide},
     journal = {Czechoslovak Mathematical Journal},
     pages = {485--501},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.21136/CMJ.2018.0396-17},
     mrnumber = {3959961},
     zbl = {07088801},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0396-17/}
}
TY  - JOUR
AU  - Rossini, Alex Ferreira
TI  - On the spectrum of Robin Laplacian in a planar waveguide
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 485
EP  - 501
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0396-17/
DO  - 10.21136/CMJ.2018.0396-17
LA  - en
ID  - 10_21136_CMJ_2018_0396_17
ER  - 
%0 Journal Article
%A Rossini, Alex Ferreira
%T On the spectrum of Robin Laplacian in a planar waveguide
%J Czechoslovak Mathematical Journal
%D 2019
%P 485-501
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0396-17/
%R 10.21136/CMJ.2018.0396-17
%G en
%F 10_21136_CMJ_2018_0396_17
Rossini, Alex Ferreira. On the spectrum of Robin Laplacian in a planar waveguide. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 485-501. doi : 10.21136/CMJ.2018.0396-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0396-17/

Cité par Sources :