Complete solution of the Diophantine equation $x^y+y^x=z^z$
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 479-484
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The triples $(x,y,z)=(1,z^z-1,z)$, $(x,y,z)=(z^z-1,1,z)$, where $z\in \Bbb N$, satisfy the equation $x^y+y^x=z^z$. In this paper it is shown that the same equation has no integer solution with $\min \{x,y,z\} > 1$, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.
The triples $(x,y,z)=(1,z^z-1,z)$, $(x,y,z)=(z^z-1,1,z)$, where $z\in \Bbb N$, satisfy the equation $x^y+y^x=z^z$. In this paper it is shown that the same equation has no integer solution with $\min \{x,y,z\} > 1$, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.
DOI :
10.21136/CMJ.2018.0395-17
Classification :
11A15, 11D61
Keywords: exponential Diophantine equation; sieving; modular computations
Keywords: exponential Diophantine equation; sieving; modular computations
@article{10_21136_CMJ_2018_0395_17,
author = {Cipu, Mihai},
title = {Complete solution of the {Diophantine} equation $x^y+y^x=z^z$},
journal = {Czechoslovak Mathematical Journal},
pages = {479--484},
year = {2019},
volume = {69},
number = {2},
doi = {10.21136/CMJ.2018.0395-17},
mrnumber = {3959960},
zbl = {07088800},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0395-17/}
}
TY - JOUR AU - Cipu, Mihai TI - Complete solution of the Diophantine equation $x^y+y^x=z^z$ JO - Czechoslovak Mathematical Journal PY - 2019 SP - 479 EP - 484 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0395-17/ DO - 10.21136/CMJ.2018.0395-17 LA - en ID - 10_21136_CMJ_2018_0395_17 ER -
Cipu, Mihai. Complete solution of the Diophantine equation $x^y+y^x=z^z$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 479-484. doi: 10.21136/CMJ.2018.0395-17
Cité par Sources :