Complete solution of the Diophantine equation $x^y+y^x=z^z$
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 479-484.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The triples $(x,y,z)=(1,z^z-1,z)$, $(x,y,z)=(z^z-1,1,z)$, where $z\in \Bbb N$, satisfy the equation $x^y+y^x=z^z$. In this paper it is shown that the same equation has no integer solution with $\min \{x,y,z\} > 1$, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.
DOI : 10.21136/CMJ.2018.0395-17
Classification : 11A15, 11D61
Keywords: exponential Diophantine equation; sieving; modular computations
@article{10_21136_CMJ_2018_0395_17,
     author = {Cipu, Mihai},
     title = {Complete solution of the {Diophantine} equation $x^y+y^x=z^z$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {479--484},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.21136/CMJ.2018.0395-17},
     mrnumber = {3959960},
     zbl = {07088800},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0395-17/}
}
TY  - JOUR
AU  - Cipu, Mihai
TI  - Complete solution of the Diophantine equation $x^y+y^x=z^z$
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 479
EP  - 484
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0395-17/
DO  - 10.21136/CMJ.2018.0395-17
LA  - en
ID  - 10_21136_CMJ_2018_0395_17
ER  - 
%0 Journal Article
%A Cipu, Mihai
%T Complete solution of the Diophantine equation $x^y+y^x=z^z$
%J Czechoslovak Mathematical Journal
%D 2019
%P 479-484
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0395-17/
%R 10.21136/CMJ.2018.0395-17
%G en
%F 10_21136_CMJ_2018_0395_17
Cipu, Mihai. Complete solution of the Diophantine equation $x^y+y^x=z^z$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 479-484. doi : 10.21136/CMJ.2018.0395-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0395-17/

Cité par Sources :