Keywords: exponential Diophantine equation; sieving; modular computations
@article{10_21136_CMJ_2018_0395_17,
author = {Cipu, Mihai},
title = {Complete solution of the {Diophantine} equation $x^y+y^x=z^z$},
journal = {Czechoslovak Mathematical Journal},
pages = {479--484},
year = {2019},
volume = {69},
number = {2},
doi = {10.21136/CMJ.2018.0395-17},
mrnumber = {3959960},
zbl = {07088800},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0395-17/}
}
TY - JOUR AU - Cipu, Mihai TI - Complete solution of the Diophantine equation $x^y+y^x=z^z$ JO - Czechoslovak Mathematical Journal PY - 2019 SP - 479 EP - 484 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0395-17/ DO - 10.21136/CMJ.2018.0395-17 LA - en ID - 10_21136_CMJ_2018_0395_17 ER -
Cipu, Mihai. Complete solution of the Diophantine equation $x^y+y^x=z^z$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 479-484. doi: 10.21136/CMJ.2018.0395-17
[1] Bugeaud, Y.: Linear forms in $p$-adic logarithms and the Diophantine equation $(x^n-1)/(x-1)=y^q$. Math. Proc. Camb. Philos. Soc. 127 (1999), 373-381. | DOI | MR | JFM
[2] Deng, Y., Zhang, W.: On the odd prime solutions of the Diophantine equation $x^y+y^x=z^z$. Abstr. Appl. Anal. 2014 (2014), Article ID 186416, 4 pages. | DOI | MR
[3] Du, X.: On the exponential Diophantine equation $x^y+y^x=z^z$. Czech. Math. J. 67 (2017), 645-653. | DOI | MR | JFM
[4] Mollin, R. A., Williams, H. C.: Computation of the class number of a real quadratic field. Util. Math. 41 (1992), 259-308. | MR | JFM
[5] The PARI-Group: PARI/GP version 2.3.5. Univ. Bordeaux (2010), Available at http://pari.math.u-bordeaux.fr/download.html\kern0pt
[6] Poorten, A. J. van der, Riele, H. J. J. te, Williams, H. C.: Computer verification of the Ankeny-Artin-Chowla Conjecture for all primes less than 100000000000. Math. Comput. 70 (2001), 1311-1328 corrigenda and addition ibid. 72 521-523 2003. | DOI | MR | JFM
[7] Wu, H. M.: The application of the BHV theorem to the Diophantine equation $x^y+y^x=z^z$. Acta Math. Sin., Chin. Ser. 58 (2015), Chinese 679-684. | MR | JFM
[8] Zhang, Z., Luo, J., Yuan, P.: On the Diophantine equation $x^y-y^x=z^z$. Chin. Ann. Math., Ser. A 34 (2013), 279-284 Chinese. | MR | JFM
Cité par Sources :