Complete solution of the Diophantine equation $x^y+y^x=z^z$
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 479-484
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The triples $(x,y,z)=(1,z^z-1,z)$, $(x,y,z)=(z^z-1,1,z)$, where $z\in \Bbb N$, satisfy the equation $x^y+y^x=z^z$. In this paper it is shown that the same equation has no integer solution with $\min \{x,y,z\} > 1$, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.
The triples $(x,y,z)=(1,z^z-1,z)$, $(x,y,z)=(z^z-1,1,z)$, where $z\in \Bbb N$, satisfy the equation $x^y+y^x=z^z$. In this paper it is shown that the same equation has no integer solution with $\min \{x,y,z\} > 1$, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.
DOI : 10.21136/CMJ.2018.0395-17
Classification : 11A15, 11D61
Keywords: exponential Diophantine equation; sieving; modular computations
@article{10_21136_CMJ_2018_0395_17,
     author = {Cipu, Mihai},
     title = {Complete solution of the {Diophantine} equation $x^y+y^x=z^z$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {479--484},
     year = {2019},
     volume = {69},
     number = {2},
     doi = {10.21136/CMJ.2018.0395-17},
     mrnumber = {3959960},
     zbl = {07088800},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0395-17/}
}
TY  - JOUR
AU  - Cipu, Mihai
TI  - Complete solution of the Diophantine equation $x^y+y^x=z^z$
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 479
EP  - 484
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0395-17/
DO  - 10.21136/CMJ.2018.0395-17
LA  - en
ID  - 10_21136_CMJ_2018_0395_17
ER  - 
%0 Journal Article
%A Cipu, Mihai
%T Complete solution of the Diophantine equation $x^y+y^x=z^z$
%J Czechoslovak Mathematical Journal
%D 2019
%P 479-484
%V 69
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0395-17/
%R 10.21136/CMJ.2018.0395-17
%G en
%F 10_21136_CMJ_2018_0395_17
Cipu, Mihai. Complete solution of the Diophantine equation $x^y+y^x=z^z$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 479-484. doi: 10.21136/CMJ.2018.0395-17

[1] Bugeaud, Y.: Linear forms in $p$-adic logarithms and the Diophantine equation $(x^n-1)/(x-1)=y^q$. Math. Proc. Camb. Philos. Soc. 127 (1999), 373-381. | DOI | MR | JFM

[2] Deng, Y., Zhang, W.: On the odd prime solutions of the Diophantine equation $x^y+y^x=z^z$. Abstr. Appl. Anal. 2014 (2014), Article ID 186416, 4 pages. | DOI | MR

[3] Du, X.: On the exponential Diophantine equation $x^y+y^x=z^z$. Czech. Math. J. 67 (2017), 645-653. | DOI | MR | JFM

[4] Mollin, R. A., Williams, H. C.: Computation of the class number of a real quadratic field. Util. Math. 41 (1992), 259-308. | MR | JFM

[5] The PARI-Group: PARI/GP version 2.3.5. Univ. Bordeaux (2010), Available at http://pari.math.u-bordeaux.fr/download.html\kern0pt

[6] Poorten, A. J. van der, Riele, H. J. J. te, Williams, H. C.: Computer verification of the Ankeny-Artin-Chowla Conjecture for all primes less than 100000000000. Math. Comput. 70 (2001), 1311-1328 corrigenda and addition ibid. 72 521-523 2003. | DOI | MR | JFM

[7] Wu, H. M.: The application of the BHV theorem to the Diophantine equation $x^y+y^x=z^z$. Acta Math. Sin., Chin. Ser. 58 (2015), Chinese 679-684. | MR | JFM

[8] Zhang, Z., Luo, J., Yuan, P.: On the Diophantine equation $x^y-y^x=z^z$. Chin. Ann. Math., Ser. A 34 (2013), 279-284 Chinese. | MR | JFM

Cité par Sources :