The exceptional set for Diophantine inequality with unlike powers of prime variables
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 149-168 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Suppose that $\lambda _1,\lambda _2,\lambda _3,\lambda _4$ are nonzero real numbers, not all negative, $\delta > 0$, $\mathcal {V}$ is a well-spaced set, and the ratio $\lambda _1/\lambda _2$ is algebraic and irrational. Denote by $E(\mathcal {V}, N,\delta )$ the number of $v\in \mathcal {V}$ with $v\leq N$ such that the inequality $$ |\lambda _1p_1^2+\lambda _2p_2^3+\lambda _3p_3^4+\lambda _4p_4^5-v|0$.
Suppose that $\lambda _1,\lambda _2,\lambda _3,\lambda _4$ are nonzero real numbers, not all negative, $\delta > 0$, $\mathcal {V}$ is a well-spaced set, and the ratio $\lambda _1/\lambda _2$ is algebraic and irrational. Denote by $E(\mathcal {V}, N,\delta )$ the number of $v\in \mathcal {V}$ with $v\leq N$ such that the inequality $$ |\lambda _1p_1^2+\lambda _2p_2^3+\lambda _3p_3^4+\lambda _4p_4^5-v|^{-\delta } $$ has no solution in primes $p_1$, $p_2$, $p_3$, $p_4$. We show that $$ E(\mathcal {V}, N,\delta )\ll N^{1+2\delta -{1}/{72}+\varepsilon } $$ for any $\varepsilon >0$.
DOI : 10.21136/CMJ.2018.0388-16
Classification : 11D75, 11P32, 11P55
Keywords: Davenport-Heilbronn method; prime varaible; exceptional set; Diophantine inequality
@article{10_21136_CMJ_2018_0388_16,
     author = {Ge, Wenxu and Zhao, Feng},
     title = {The exceptional set for {Diophantine} inequality with unlike powers of prime variables},
     journal = {Czechoslovak Mathematical Journal},
     pages = {149--168},
     year = {2018},
     volume = {68},
     number = {1},
     doi = {10.21136/CMJ.2018.0388-16},
     mrnumber = {3783591},
     zbl = {06861573},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0388-16/}
}
TY  - JOUR
AU  - Ge, Wenxu
AU  - Zhao, Feng
TI  - The exceptional set for Diophantine inequality with unlike powers of prime variables
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 149
EP  - 168
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0388-16/
DO  - 10.21136/CMJ.2018.0388-16
LA  - en
ID  - 10_21136_CMJ_2018_0388_16
ER  - 
%0 Journal Article
%A Ge, Wenxu
%A Zhao, Feng
%T The exceptional set for Diophantine inequality with unlike powers of prime variables
%J Czechoslovak Mathematical Journal
%D 2018
%P 149-168
%V 68
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0388-16/
%R 10.21136/CMJ.2018.0388-16
%G en
%F 10_21136_CMJ_2018_0388_16
Ge, Wenxu; Zhao, Feng. The exceptional set for Diophantine inequality with unlike powers of prime variables. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 149-168. doi: 10.21136/CMJ.2018.0388-16

[1] Cook, R. J., Fox, A.: The values of ternary quadratic forms at prime arguments. Mathematika 48 (2001), 137-149. | DOI | MR | JFM

[2] Cook, R. J., Harman, G.: The values of additive forms at prime arguments. Rocky Mt. J. Math. 36 (2006), 1153-1164. | DOI | MR | JFM

[3] Davenport, H.: Analytic Methods for Diophantine Equations and Diophantine Inequalities. The University of Michigan, Fall Semester 1962, Ann Arbor Publishers, Ann Arbor (1963). | MR | JFM

[4] Ge, W., Li, W.: One Diophantine inequality with unlike powers of prime variables. J. Inequal. Appl. 2016 (2016), Paper No. 33, 8 pages. | DOI | MR | JFM

[5] Harman, G.: The values of ternary quadratic forms at prime arguments. Mathematika 51 (2004), 83-96. | DOI | MR | JFM

[6] Harman, G.: Trigonometric sums over primes I. Mathematika 28 (1981), 249-254. | DOI | MR | JFM

[7] Kumchev, A. V.: On Weyl sums over primes and almost primes. Mich. Math. J. 54 (2006), 243-268. | DOI | MR | JFM

[8] Languasco, A., Zaccagnini, A.: On a ternary Diophantine problem with mixed powers of primes. Acta Arith. 159 (2013), 345-362. | DOI | MR | JFM

[9] Mu, Q., Lü, X. D.: Diophantine approximation with prime variables and mixed powers. Chin. Ann. Math., Ser. A 36 (2015), 303-312 Chinese. English summary. | DOI | MR | JFM

[10] Ren, X.: On exponential sums over primes and application in Waring-Goldbach problem. Sci. China Ser. A 48 (2005), 785-797. | DOI | MR | JFM

[11] Schmidt, W. M.: Diophantine Approximation. Lecture Notes in Mathematics 785, Springer, New York (1980). | DOI | MR | JFM

[12] Vaughan, R. C.: Diophantine approximation by prime numbers I. Proc. Lond. Math. Soc., III. Ser. 28 (1974), 373-384. | DOI | MR | JFM

[13] Vaughan, R. C.: Diophantine approximation by prime numbers II. Proc. Lond. Math. Soc., III. Ser. 28 (1974), 385-401. | DOI | MR | JFM

[14] Yang, Y., Li, W.: One Diophantine inequality with integer and prime variables. J. Inequal. Appl. 2015 (2015), Paper No. 293, 9 pages. | DOI | MR | JFM

[15] Zhao, L.: On the Waring-Goldbach problem for fourth and sixth powers. Proc. Lond. Math. Soc. (3) 108 (2014), 1593-1622. | DOI | MR | JFM

[16] Zhao, L.: The additive problem with one cube and three cubes of primes. Mich. Math. J. 63 (2014), 763-779. | DOI | MR | JFM

Cité par Sources :