On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 453-470
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mathfrak {a}$, $I$, $J$ be ideals of a Noetherian local ring $(R,\mathfrak {m},k)$. Let $M$ and $N$ be finitely generated $R$-modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of $H^t_{I,J}(M)$ and $D(H^t_{I,J}(M))$, where $t$ is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and $D(-):= {\rm Hom}_R(-,E_R(k))$ is the Matlis dual functor. We show that if $R$ is a $d$-dimensional complete Cohen-Macaulay ring and $H^i_{I,J}(R)=0$ for all $i\neq t$, the natural homomorphism $R\rightarrow {\rm Hom}_R(H^t_{I,J}(K_R), H^t_{I,J}(K_R))$ is an isomorphism, where $K_R$ denotes the canonical module of $R$. Also, we discuss the depth and Cohen-Macaulayness of the Matlis dual of the top local cohomology modules with respect to a pair of ideals.
DOI :
10.21136/CMJ.2018.0386-17
Classification :
13C14, 13D45
Keywords: local cohomology; Matlis duality; endomorphism ring
Keywords: local cohomology; Matlis duality; endomorphism ring
@article{10_21136_CMJ_2018_0386_17,
author = {Freitas, Thiago H. and Jorge P\'erez, Victor H.},
title = {On the endomorphism ring and {Cohen-Macaulayness} of local cohomology defined by a pair of ideals},
journal = {Czechoslovak Mathematical Journal},
pages = {453--470},
publisher = {mathdoc},
volume = {69},
number = {2},
year = {2019},
doi = {10.21136/CMJ.2018.0386-17},
mrnumber = {3959958},
zbl = {07088798},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-17/}
}
TY - JOUR AU - Freitas, Thiago H. AU - Jorge Pérez, Victor H. TI - On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals JO - Czechoslovak Mathematical Journal PY - 2019 SP - 453 EP - 470 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-17/ DO - 10.21136/CMJ.2018.0386-17 LA - en ID - 10_21136_CMJ_2018_0386_17 ER -
%0 Journal Article %A Freitas, Thiago H. %A Jorge Pérez, Victor H. %T On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals %J Czechoslovak Mathematical Journal %D 2019 %P 453-470 %V 69 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-17/ %R 10.21136/CMJ.2018.0386-17 %G en %F 10_21136_CMJ_2018_0386_17
Freitas, Thiago H.; Jorge Pérez, Victor H. On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 453-470. doi: 10.21136/CMJ.2018.0386-17
Cité par Sources :