On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 453-470 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathfrak {a}$, $I$, $J$ be ideals of a Noetherian local ring $(R,\mathfrak {m},k)$. Let $M$ and $N$ be finitely generated $R$-modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of $H^t_{I,J}(M)$ and $D(H^t_{I,J}(M))$, where $t$ is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and $D(-):= {\rm Hom}_R(-,E_R(k))$ is the Matlis dual functor. We show that if $R$ is a $d$-dimensional complete Cohen-Macaulay ring and $H^i_{I,J}(R)=0$ for all $i\neq t$, the natural homomorphism $R\rightarrow {\rm Hom}_R(H^t_{I,J}(K_R), H^t_{I,J}(K_R))$ is an isomorphism, where $K_R$ denotes the canonical module of $R$. Also, we discuss the depth and Cohen-Macaulayness of the Matlis dual of the top local cohomology modules with respect to a pair of ideals.
Let $\mathfrak {a}$, $I$, $J$ be ideals of a Noetherian local ring $(R,\mathfrak {m},k)$. Let $M$ and $N$ be finitely generated $R$-modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of $H^t_{I,J}(M)$ and $D(H^t_{I,J}(M))$, where $t$ is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and $D(-):= {\rm Hom}_R(-,E_R(k))$ is the Matlis dual functor. We show that if $R$ is a $d$-dimensional complete Cohen-Macaulay ring and $H^i_{I,J}(R)=0$ for all $i\neq t$, the natural homomorphism $R\rightarrow {\rm Hom}_R(H^t_{I,J}(K_R), H^t_{I,J}(K_R))$ is an isomorphism, where $K_R$ denotes the canonical module of $R$. Also, we discuss the depth and Cohen-Macaulayness of the Matlis dual of the top local cohomology modules with respect to a pair of ideals.
DOI : 10.21136/CMJ.2018.0386-17
Classification : 13C14, 13D45
Keywords: local cohomology; Matlis duality; endomorphism ring
@article{10_21136_CMJ_2018_0386_17,
     author = {Freitas, Thiago H. and Jorge P\'erez, Victor H.},
     title = {On the endomorphism ring and {Cohen-Macaulayness} of local cohomology defined by a pair of ideals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {453--470},
     year = {2019},
     volume = {69},
     number = {2},
     doi = {10.21136/CMJ.2018.0386-17},
     mrnumber = {3959958},
     zbl = {07088798},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-17/}
}
TY  - JOUR
AU  - Freitas, Thiago H.
AU  - Jorge Pérez, Victor H.
TI  - On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 453
EP  - 470
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-17/
DO  - 10.21136/CMJ.2018.0386-17
LA  - en
ID  - 10_21136_CMJ_2018_0386_17
ER  - 
%0 Journal Article
%A Freitas, Thiago H.
%A Jorge Pérez, Victor H.
%T On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals
%J Czechoslovak Mathematical Journal
%D 2019
%P 453-470
%V 69
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-17/
%R 10.21136/CMJ.2018.0386-17
%G en
%F 10_21136_CMJ_2018_0386_17
Freitas, Thiago H.; Jorge Pérez, Victor H. On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 453-470. doi: 10.21136/CMJ.2018.0386-17

[1] Aghapournahr, M., Ahmadi-Amoli, K., Sadeghi, M. Y.: The concept of {$(I,J)$}-Cohen-Macaulay modules. J. Algebr. Syst. 3 (2015), 1-10. | DOI | MR

[2] Ahmadi-Amoli, K., Sadeghi, M. Y.: On the local cohomology modules defined by a pair of ideals and Serre subcategory. J. Math. Ext. 7 (2013), 47-62. | MR | JFM

[3] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: an Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[4] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[5] Chu, L.: Top local cohomology modules with respect to a pair of ideals. Proc. Am. Math. Soc. 139 (2011), 777-782. | DOI | MR | JFM

[6] Chu, L.-Z., Wang, Q.: Some results on local cohomology modules defined by a pair of ideals. J. Math. Kyoto Univ. 49 (2009), 193-200. | DOI | MR | JFM

[7] Eghbali, M., Schenzel, P.: On an endomorphism ring of local cohomology. Commun. Algebra 40 (2012), 4295-4305. | DOI | MR | JFM

[8] Freitas, T. H., Pérez, V. H. Jorge: On formal local cohomology modules with respect to a pair of ideals. J. Commut. Algebra 8 (2016), 337-366. | DOI | MR | JFM

[9] Freitas, T. H., Pérez, V. H. Jorge: Artinianness and finiteness of formal local cohomology modules with respect to a pair of ideals. Beitr. Algebra Geom. 58 (2017), 319-340. | DOI | MR | JFM

[10] Hartshorne, R.: Local Cohomology. Lecture Notes in Mathematics 41, Springer, Berlin (1967). | DOI | MR | JFM

[11] Hellus, M., Schenzel, P.: On cohomologically complete intersections. J. Algebra 320 (2008), 3733-3748. | DOI | MR | JFM

[12] Hellus, M., Stückrad, J.: On endomorphism rings of local cohomology modules. Proc. Am. Math. Soc. 136 (2008), 2333-2341. | DOI | MR | JFM

[13] Hochster, M., Huneke, C.: Indecomposable canonical modules and connectedness. Commutative Algebra: Syzygies, Multiplicities, and Birational Algebra W. J. Heinzer et al. Contemp. Math. 159, American Mathematical Society, Providence (1994), 197-208. | DOI | MR | JFM

[14] Iyengar, S. B., Leuschke, G. J., Leykin, A., Miller, C., Miller, E., Singh, A. K., Walther, U.: Twenty-Four Hours of Local Cohomology. Graduate Studies in Mathematics 87, American Mathematical Society, Providence (2007). | DOI | MR | JFM

[15] Khashyarmanesh, K.: On the endomorphism rings of local cohomology modules. Can. Math. Bull. 53 (2010), 667-673. | DOI | MR | JFM

[16] Mafi, A.: Some criteria for the Cohen-Macaulay property and local cohomology. Acta Math. Sin., Engl. Ser. 25 (2009), 917-922. | DOI | MR | JFM

[17] Mahmood, W.: On endomorphism ring of local cohomology modules. Available at | arXiv

[18] Payrovi, S., Parsa, M. Lotfi: Artinianness of local cohomology modules defined by a pair of ideals. Bull. Malays. Math. Sci. Soc. (2) 35 (2012), 877-883. | MR | JFM

[19] Payrovi, S., Parsa, M. Lotfi: Finiteness of local cohomology modules defined by a pair of ideals. Commun. Algebra 41 (2013), 627-637. | DOI | MR | JFM

[20] Talemi, A. Pour Eshmanan, Tehranian, A.: Local cohomology with respect to a cohomologically complete intersection pair of ideals. Iran. J. Math. Sci. Inform. 9 (2014), 7-13. | DOI | MR | JFM

[21] Sadeghi, M. Y., Eghbali, M., Ahmadi-Amoli, K.: On top local cohomology modules, Matlis duality and tensor products. (to appear) in J. Algebra Appl. | DOI

[22] Schenzel, P.: On birational Macaulayfications and Cohen-Macaulay canonical modules. J. Algebra 275 (2004), 751-770. | DOI | MR | JFM

[23] Schenzel, P.: On endomorphism rings and dimensions of local cohomology modules. Proc. Am. Math. Soc. 137 (2009), 1315-1322. | DOI | MR | JFM

[24] Schenzel, P.: Matlis duals of local cohomology modules and their endomorphism rings. Arch. Math. 95 (2010), 115-123. | DOI | MR | JFM

[25] Schenzel, P.: On the structure of the endomorphism ring of a certain local cohomology module. J. Algebra 344 (2011), 229-245. | DOI | MR | JFM

[26] Strooker, J. R.: Homological Questions in Local Algebra. London Mathematical Society Lecture Note Series 145, Cambridge University Press, Cambridge (1990). | DOI | MR | JFM

[27] Takahashi, R., Yoshino, Y., Yoshizawa, T.: Local cohomology based on a nonclosed support defined by a pair of ideals. J. Pure Appl. Algebra 213 (2009), 582-600. | DOI | MR | JFM

[28] Tehranian, A., Talemi, A. Pour Eshmanan: Non-Artinian local cohomology with respect to a pair of ideals. Algebra Colloq. 20 (2013), 637-642. | DOI | MR | JFM

[29] Tehranian, A., Talemi, A. Pour Eshmanan: Filter depth and cofiniteness of local cohomology modules defined by a pair of ideals. Algebra Colloq. 21 (2014), 597-604. | DOI | MR | JFM

Cité par Sources :