On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 453-470.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathfrak {a}$, $I$, $J$ be ideals of a Noetherian local ring $(R,\mathfrak {m},k)$. Let $M$ and $N$ be finitely generated $R$-modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of $H^t_{I,J}(M)$ and $D(H^t_{I,J}(M))$, where $t$ is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and $D(-):= {\rm Hom}_R(-,E_R(k))$ is the Matlis dual functor. We show that if $R$ is a $d$-dimensional complete Cohen-Macaulay ring and $H^i_{I,J}(R)=0$ for all $i\neq t$, the natural homomorphism $R\rightarrow {\rm Hom}_R(H^t_{I,J}(K_R), H^t_{I,J}(K_R))$ is an isomorphism, where $K_R$ denotes the canonical module of $R$. Also, we discuss the depth and Cohen-Macaulayness of the Matlis dual of the top local cohomology modules with respect to a pair of ideals.
DOI : 10.21136/CMJ.2018.0386-17
Classification : 13C14, 13D45
Keywords: local cohomology; Matlis duality; endomorphism ring
@article{10_21136_CMJ_2018_0386_17,
     author = {Freitas, Thiago H. and Jorge P\'erez, Victor H.},
     title = {On the endomorphism ring and {Cohen-Macaulayness} of local cohomology defined by a pair of ideals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {453--470},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.21136/CMJ.2018.0386-17},
     mrnumber = {3959958},
     zbl = {07088798},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-17/}
}
TY  - JOUR
AU  - Freitas, Thiago H.
AU  - Jorge Pérez, Victor H.
TI  - On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 453
EP  - 470
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-17/
DO  - 10.21136/CMJ.2018.0386-17
LA  - en
ID  - 10_21136_CMJ_2018_0386_17
ER  - 
%0 Journal Article
%A Freitas, Thiago H.
%A Jorge Pérez, Victor H.
%T On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals
%J Czechoslovak Mathematical Journal
%D 2019
%P 453-470
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-17/
%R 10.21136/CMJ.2018.0386-17
%G en
%F 10_21136_CMJ_2018_0386_17
Freitas, Thiago H.; Jorge Pérez, Victor H. On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 453-470. doi : 10.21136/CMJ.2018.0386-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-17/

Cité par Sources :