Group algebras whose groups of normalized units have exponent 4
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 141-148 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a full description of locally finite $2$-groups $G$ such that the normalized group of units of the group algebra $FG$ over a field $F$ of characteristic $2$ has exponent $4$.
We give a full description of locally finite $2$-groups $G$ such that the normalized group of units of the group algebra $FG$ over a field $F$ of characteristic $2$ has exponent $4$.
DOI : 10.21136/CMJ.2018.0386-16
Classification : 16S34, 16U60
Keywords: group of exponent 4; unit group; modular group algebra
@article{10_21136_CMJ_2018_0386_16,
     author = {Bovdi, Victor and Salim, Mohammed},
     title = {Group algebras whose groups of normalized units have exponent 4},
     journal = {Czechoslovak Mathematical Journal},
     pages = {141--148},
     year = {2018},
     volume = {68},
     number = {1},
     doi = {10.21136/CMJ.2018.0386-16},
     mrnumber = {3783590},
     zbl = {06861572},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-16/}
}
TY  - JOUR
AU  - Bovdi, Victor
AU  - Salim, Mohammed
TI  - Group algebras whose groups of normalized units have exponent 4
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 141
EP  - 148
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-16/
DO  - 10.21136/CMJ.2018.0386-16
LA  - en
ID  - 10_21136_CMJ_2018_0386_16
ER  - 
%0 Journal Article
%A Bovdi, Victor
%A Salim, Mohammed
%T Group algebras whose groups of normalized units have exponent 4
%J Czechoslovak Mathematical Journal
%D 2018
%P 141-148
%V 68
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-16/
%R 10.21136/CMJ.2018.0386-16
%G en
%F 10_21136_CMJ_2018_0386_16
Bovdi, Victor; Salim, Mohammed. Group algebras whose groups of normalized units have exponent 4. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 141-148. doi: 10.21136/CMJ.2018.0386-16

[1] Bovdi, A. A.: Group Rings. University publishers, Uzgorod (1974), Russian. | MR | JFM

[2] Bovdi, A.: The group of units of a group algebra of characteristic $p$. Publ. Math. 52 (1998), 193-244. | MR | JFM

[3] Bovdi, V.: Group algebras whose group of units is powerful. J. Aust. Math. Soc. 87 (2009), 325-328. | DOI | MR | JFM

[4] Bovdi, V., Dokuchaev, M.: Group algebras whose involutory units commute. Algebra Colloq. 9 (2002), 49-64. | MR | JFM

[5] Bovdi, V., Konovalov, A., Rossmanith, R., Schneider, C.: LAGUNA Lie AlGebras and UNits of group Algebras. Version 3.5.0, 2009, http://www.cs.st-andrews.ac.uk/{alexk/laguna/}

[6] Bovdi, A., Lakatos, P.: On the exponent of the group of normalized units of modular group algebras. Publ. Math. 42 (1993), 409-415. | MR | JFM

[7] Caranti, A.: Finite $p$-groups of exponent $p^2$ in which each element commutes with its endomorphic images. J. Algebra 97 (1985), 1-13. | DOI | MR | JFM

[8] GAP: The GAP Group. GAP---Groups, Algorithms, and Programming, Version 4.4.12, http://www.gap-system.org

[9] Gupta, N. D., Newman, M. F.: The nilpotency class of finitely generated groups of exponent four. Proc. 2nd Int. Conf. Theory of Groups, Canberra, 1973, Lect. Notes Math. 372, Springer, Berlin (1974), 330-332. | DOI | MR | JFM

[10] M. Hall, Jr.: The Theory of Groups. The Macmillan Company, New York (1959). | MR | JFM

[11] Janko, Z.: On finite nonabelian 2-groups all of whose minimal nonabelian subgroups are of exponent 4. J. Algebra 315 (2007), 801-808. | DOI | MR | JFM

[12] Janko, Z.: Finite nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4. J. Algebra 321 (2009), 2890-2897. | DOI | MR | JFM

[13] Janko, Z.: Finite $p$-groups of exponent $p^e$ all of whose cyclic subgroups of order $p^e$ are normal. J. Algebra 416 (2014), 274-286. | DOI | MR | JFM

[14] Quick, M.: Varieties of groups of exponent 4. J. Lond. Math. Soc., II. Ser. 60 (1999), 747-756. | DOI | MR | JFM

[15] Shalev, A.: Dimension subgroups, nilpotency indices, and the number of generators of ideals in $p$-group algebras. J. Algebra 129 (1990), 412-438. | DOI | MR | JFM

[16] Shalev, A.: Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units. J. Lond. Math. Soc., II. Ser. 43 (1991), 23-36. | DOI | MR | JFM

[17] Vaughan-Lee, M. R., Wiegold, J.: Countable locally nilpotent groups of finite exponent without maximal subgroups. Bull. Lond. Math. Soc. 13 (1981), 45-46. | DOI | MR | JFM

Cité par Sources :