Keywords: group of exponent 4; unit group; modular group algebra
@article{10_21136_CMJ_2018_0386_16,
author = {Bovdi, Victor and Salim, Mohammed},
title = {Group algebras whose groups of normalized units have exponent 4},
journal = {Czechoslovak Mathematical Journal},
pages = {141--148},
year = {2018},
volume = {68},
number = {1},
doi = {10.21136/CMJ.2018.0386-16},
mrnumber = {3783590},
zbl = {06861572},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-16/}
}
TY - JOUR AU - Bovdi, Victor AU - Salim, Mohammed TI - Group algebras whose groups of normalized units have exponent 4 JO - Czechoslovak Mathematical Journal PY - 2018 SP - 141 EP - 148 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-16/ DO - 10.21136/CMJ.2018.0386-16 LA - en ID - 10_21136_CMJ_2018_0386_16 ER -
%0 Journal Article %A Bovdi, Victor %A Salim, Mohammed %T Group algebras whose groups of normalized units have exponent 4 %J Czechoslovak Mathematical Journal %D 2018 %P 141-148 %V 68 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0386-16/ %R 10.21136/CMJ.2018.0386-16 %G en %F 10_21136_CMJ_2018_0386_16
Bovdi, Victor; Salim, Mohammed. Group algebras whose groups of normalized units have exponent 4. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 141-148. doi: 10.21136/CMJ.2018.0386-16
[1] Bovdi, A. A.: Group Rings. University publishers, Uzgorod (1974), Russian. | MR | JFM
[2] Bovdi, A.: The group of units of a group algebra of characteristic $p$. Publ. Math. 52 (1998), 193-244. | MR | JFM
[3] Bovdi, V.: Group algebras whose group of units is powerful. J. Aust. Math. Soc. 87 (2009), 325-328. | DOI | MR | JFM
[4] Bovdi, V., Dokuchaev, M.: Group algebras whose involutory units commute. Algebra Colloq. 9 (2002), 49-64. | MR | JFM
[5] Bovdi, V., Konovalov, A., Rossmanith, R., Schneider, C.: LAGUNA Lie AlGebras and UNits of group Algebras. Version 3.5.0, 2009, http://www.cs.st-andrews.ac.uk/{alexk/laguna/}
[6] Bovdi, A., Lakatos, P.: On the exponent of the group of normalized units of modular group algebras. Publ. Math. 42 (1993), 409-415. | MR | JFM
[7] Caranti, A.: Finite $p$-groups of exponent $p^2$ in which each element commutes with its endomorphic images. J. Algebra 97 (1985), 1-13. | DOI | MR | JFM
[8] GAP: The GAP Group. GAP---Groups, Algorithms, and Programming, Version 4.4.12, http://www.gap-system.org
[9] Gupta, N. D., Newman, M. F.: The nilpotency class of finitely generated groups of exponent four. Proc. 2nd Int. Conf. Theory of Groups, Canberra, 1973, Lect. Notes Math. 372, Springer, Berlin (1974), 330-332. | DOI | MR | JFM
[10] M. Hall, Jr.: The Theory of Groups. The Macmillan Company, New York (1959). | MR | JFM
[11] Janko, Z.: On finite nonabelian 2-groups all of whose minimal nonabelian subgroups are of exponent 4. J. Algebra 315 (2007), 801-808. | DOI | MR | JFM
[12] Janko, Z.: Finite nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4. J. Algebra 321 (2009), 2890-2897. | DOI | MR | JFM
[13] Janko, Z.: Finite $p$-groups of exponent $p^e$ all of whose cyclic subgroups of order $p^e$ are normal. J. Algebra 416 (2014), 274-286. | DOI | MR | JFM
[14] Quick, M.: Varieties of groups of exponent 4. J. Lond. Math. Soc., II. Ser. 60 (1999), 747-756. | DOI | MR | JFM
[15] Shalev, A.: Dimension subgroups, nilpotency indices, and the number of generators of ideals in $p$-group algebras. J. Algebra 129 (1990), 412-438. | DOI | MR | JFM
[16] Shalev, A.: Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units. J. Lond. Math. Soc., II. Ser. 43 (1991), 23-36. | DOI | MR | JFM
[17] Vaughan-Lee, M. R., Wiegold, J.: Countable locally nilpotent groups of finite exponent without maximal subgroups. Bull. Lond. Math. Soc. 13 (1981), 45-46. | DOI | MR | JFM
Cité par Sources :