A note on the distribution of angles associated to indefinite integral binary quadratic forms
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 443-452
To each indefinite integral binary quadratic form $Q$, we may associate the geodesic in $\mathbb {H}$ through the roots of quadratic equation $Q(x,1)$. In this paper we study the asymptotic distribution (as discriminant tends to infinity) of the angles between these geodesics and one fixed vertical geodesic which intersects all of them.
To each indefinite integral binary quadratic form $Q$, we may associate the geodesic in $\mathbb {H}$ through the roots of quadratic equation $Q(x,1)$. In this paper we study the asymptotic distribution (as discriminant tends to infinity) of the angles between these geodesics and one fixed vertical geodesic which intersects all of them.
DOI :
10.21136/CMJ.2018.0370-17
Classification :
06B10, 11L15, 62E20
Keywords: Weyl sum; indefinite integral binary quadratic form; real quadratic field; geodesic; asymptotic distribution
Keywords: Weyl sum; indefinite integral binary quadratic form; real quadratic field; geodesic; asymptotic distribution
@article{10_21136_CMJ_2018_0370_17,
author = {{\DJ}oki\'c, Dragan},
title = {A note on the distribution of angles associated to indefinite integral binary quadratic forms},
journal = {Czechoslovak Mathematical Journal},
pages = {443--452},
year = {2019},
volume = {69},
number = {2},
doi = {10.21136/CMJ.2018.0370-17},
mrnumber = {3959957},
zbl = {07088797},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0370-17/}
}
TY - JOUR AU - Đokić, Dragan TI - A note on the distribution of angles associated to indefinite integral binary quadratic forms JO - Czechoslovak Mathematical Journal PY - 2019 SP - 443 EP - 452 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0370-17/ DO - 10.21136/CMJ.2018.0370-17 LA - en ID - 10_21136_CMJ_2018_0370_17 ER -
%0 Journal Article %A Đokić, Dragan %T A note on the distribution of angles associated to indefinite integral binary quadratic forms %J Czechoslovak Mathematical Journal %D 2019 %P 443-452 %V 69 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0370-17/ %R 10.21136/CMJ.2018.0370-17 %G en %F 10_21136_CMJ_2018_0370_17
Đokić, Dragan. A note on the distribution of angles associated to indefinite integral binary quadratic forms. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 443-452. doi: 10.21136/CMJ.2018.0370-17
[1] Buell, D. A.: Binary Quadratic Forms. Classical Theory and Modern Computations. Springer, New York (1989). | DOI | MR | JFM
[2] Duke, W., Friedlander, J. B., Iwaniec, H.: Weyl sums for quadratic roots. Int. Math. Res. Not. 2012 (2012), 2493-2549 erratum ibid. 2012 2646-2648 2012. | DOI | MR | JFM
[3] Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications 53, American Mathematical Society, Providence (2004). | DOI | MR | JFM
[4] Murty, M. R.: Problems in Analytic Number Theory. Graduate Texts in Mathematics 206, Springer, New York (2008). | DOI | MR | JFM
Cité par Sources :