Recognition of some families of finite simple groups by order and set of orders of vanishing elements
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 121-130
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a finite group. An element $g\in G$ is called a vanishing element if there exists an irreducible complex character $\chi $ of $G$ such that $\chi (g)=0$. Denote by ${\rm Vo}(G)$ the set of orders of vanishing elements of $G$. Ghasemabadi, Iranmanesh, Mavadatpour (2015), in their paper presented the following conjecture: Let $G$ be a finite group and $M$ a finite nonabelian simple group such that ${\rm Vo}(G)={\rm Vo}(M)$ and $|G|=|M|$. Then $G\cong M$. We answer in affirmative this conjecture for $M=Sz(q)$, where $q=2^{2n+1}$ and either $q-1$, $q-\sqrt {2q}+1$ or $q+\sqrt {2q}+1$ is a prime number, and $M=F_4(q)$, where $q=2^n$ and either $q^4+1$ or $q^4-q^2+1$ is a prime number.
Let $G$ be a finite group. An element $g\in G$ is called a vanishing element if there exists an irreducible complex character $\chi $ of $G$ such that $\chi (g)=0$. Denote by ${\rm Vo}(G)$ the set of orders of vanishing elements of $G$. Ghasemabadi, Iranmanesh, Mavadatpour (2015), in their paper presented the following conjecture: Let $G$ be a finite group and $M$ a finite nonabelian simple group such that ${\rm Vo}(G)={\rm Vo}(M)$ and $|G|=|M|$. Then $G\cong M$. We answer in affirmative this conjecture for $M=Sz(q)$, where $q=2^{2n+1}$ and either $q-1$, $q-\sqrt {2q}+1$ or $q+\sqrt {2q}+1$ is a prime number, and $M=F_4(q)$, where $q=2^n$ and either $q^4+1$ or $q^4-q^2+1$ is a prime number.
DOI : 10.21136/CMJ.2018.0355-16
Classification : 20C15, 20D05
Keywords: finite simple groups; vanishing element; vanishing prime graph
@article{10_21136_CMJ_2018_0355_16,
     author = {Khatami, Maryam and Babai, Azam},
     title = {Recognition of some families of finite simple groups by order and set of orders of vanishing elements},
     journal = {Czechoslovak Mathematical Journal},
     pages = {121--130},
     year = {2018},
     volume = {68},
     number = {1},
     doi = {10.21136/CMJ.2018.0355-16},
     mrnumber = {3783588},
     zbl = {06861570},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0355-16/}
}
TY  - JOUR
AU  - Khatami, Maryam
AU  - Babai, Azam
TI  - Recognition of some families of finite simple groups by order and set of orders of vanishing elements
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 121
EP  - 130
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0355-16/
DO  - 10.21136/CMJ.2018.0355-16
LA  - en
ID  - 10_21136_CMJ_2018_0355_16
ER  - 
%0 Journal Article
%A Khatami, Maryam
%A Babai, Azam
%T Recognition of some families of finite simple groups by order and set of orders of vanishing elements
%J Czechoslovak Mathematical Journal
%D 2018
%P 121-130
%V 68
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0355-16/
%R 10.21136/CMJ.2018.0355-16
%G en
%F 10_21136_CMJ_2018_0355_16
Khatami, Maryam; Babai, Azam. Recognition of some families of finite simple groups by order and set of orders of vanishing elements. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 121-130. doi: 10.21136/CMJ.2018.0355-16

[1] Chen, G.: Further reflections on Thompson's conjecture. J. Algebra 218 (1999), 276-285. | DOI | MR | JFM

[2] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. Clarendon Press, Oxford (1985). | MR | JFM

[3] Crescenzo, P.: A Diophantine equation which arises in the theory of finite groups. Adv. Math. 17 (1975), 25-29. | DOI | MR | JFM

[4] Dolfi, S., Pacifici, E., Sanus, L., Spiga, P.: On the vanishing prime graph of finite groups. J. Lond. Math. Soc., II. Ser. 82 (2010), 167-183. | DOI | MR | JFM

[5] Dolfi, S., Pacifici, E., Sanus, L., Spiga, P.: On the vanishing prime graph of solvable groups. J. Group Theory 13 (2010), 189-206. | DOI | MR | JFM

[6] Ghasemabadi, M. F., Iranmanesh, A., Ahanjideh, M.: A new characterization of some families of finite simple groups. Rend. Semin. Mat. Univ. Padova 137 (2017), 57-74. | DOI | MR | JFM

[7] Ghasemabadi, M. F., Iranmanesh, A., Mavadatpur, F.: A new characterization of some finite simple groups. Sib. Math. J. 56 (2015), 78-82 English. Russian original translation from Sib. Math. Zh. 56 2015 94-99. | DOI | MR | JFM

[8] Isaacs, I. M.: Character Theory of Finite Groups. Pure and Applied Mathematics 69, Academic Press, New York (1976). | DOI | MR | JFM

[9] James, G., Liebeck, M.: Representations and Characters of Groups. Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge (1993). | DOI | MR | JFM

[10] Shi, H., Chen, G. Y.: Relation between $B_p(3)$ and $C_p(3)$ with their order components where $p$ is an odd prime. J. Appl. Math. Inform. 27 (2009), 653-659.

[11] Vasil'ev, A. V., Vdovin, E. P.: An adjacency criterion for the prime graph of a finite simple group. Algebra Logic 44 (2005), 381-406 English. Russian original translation from Algebra Logika 44 2005 682-725. | DOI | MR | JFM

[12] Williams, J. S.: Prime graph components of finite groups. J. Algebra 69 (1981), 487-513. | DOI | MR | JFM

[13] Zhang, J., Li, Z., Shao, C.: Finite groups whose irreducible characters vanish only on elements of prime power order. Int. Electron. J. Algebra 9 (2011), 114-123. | MR | JFM

[14] Zsigmondy, K.: Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3 (1892), 265-284 German \99999JFM99999 24.0176.02. | DOI | MR

Cité par Sources :