Extensions of covariantly finite subcategories revisited
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 403-415 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Extriangulated categories were introduced by Nakaoka and Palu by extracting the similarities between exact categories and triangulated categories. A notion of homotopy cartesian square in an extriangulated category is defined in this article. We prove that in an extriangulated category with enough projective objects, the extension subcategory of two covariantly finite subcategories is covariantly finite. As an application, we give a simultaneous generalization of a result of X. W. Chen (2009) and of a result of R. Gentle, G. Todorov (1996).
Extriangulated categories were introduced by Nakaoka and Palu by extracting the similarities between exact categories and triangulated categories. A notion of homotopy cartesian square in an extriangulated category is defined in this article. We prove that in an extriangulated category with enough projective objects, the extension subcategory of two covariantly finite subcategories is covariantly finite. As an application, we give a simultaneous generalization of a result of X. W. Chen (2009) and of a result of R. Gentle, G. Todorov (1996).
DOI : 10.21136/CMJ.2018.0338-17
Classification : 18E10, 18E30
Keywords: extriangulated category; covariantly finite subcategory
@article{10_21136_CMJ_2018_0338_17,
     author = {He, Jing},
     title = {Extensions of covariantly finite subcategories revisited},
     journal = {Czechoslovak Mathematical Journal},
     pages = {403--415},
     year = {2019},
     volume = {69},
     number = {2},
     doi = {10.21136/CMJ.2018.0338-17},
     mrnumber = {3959953},
     zbl = {07088793},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0338-17/}
}
TY  - JOUR
AU  - He, Jing
TI  - Extensions of covariantly finite subcategories revisited
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 403
EP  - 415
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0338-17/
DO  - 10.21136/CMJ.2018.0338-17
LA  - en
ID  - 10_21136_CMJ_2018_0338_17
ER  - 
%0 Journal Article
%A He, Jing
%T Extensions of covariantly finite subcategories revisited
%J Czechoslovak Mathematical Journal
%D 2019
%P 403-415
%V 69
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0338-17/
%R 10.21136/CMJ.2018.0338-17
%G en
%F 10_21136_CMJ_2018_0338_17
He, Jing. Extensions of covariantly finite subcategories revisited. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 403-415. doi: 10.21136/CMJ.2018.0338-17

[1] Auslander, M., Reiten, I.: Applications of contravariantly finite subcategories. Adv. Math. 86 (1991), 111-152. | DOI | MR | JFM

[2] Barot, M., Kussin, D., Lenzing, H.: The Grothendieck group of a cluster category. J. Pure Appl. Algebra 212 (2008), 33-46. | DOI | MR | JFM

[3] Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories. Mem. Amer. Math. Soc. 188 (2007). | DOI | MR | JFM

[4] Bühler, T.: Exact categories. Expo. Math. 28 (2010), 1-69. | DOI | MR | JFM

[5] Chen, X. W.: Extensions of covariantly finite subcategories. Arch. Math. 93 (2009), 29-35. | DOI | MR | JFM

[6] Gentle, R., Todorov, G.: Extensions, kernels and cokernels of homologically finite subcategories. Representation theory of algebras. Seventh international conference, August 22-26, 1994, Cocoyoc, Mexico Bautista, Raymundo et al. American Mathematical Society. CMS Conf. Proc. 18 (1996), 227-235. | MR | JFM

[7] Hügel, L. A., Marks, F., Vitória, J.: Silting modules and ring epimorphisms. Adv. Math. 303 (2016), 1044-1076. | DOI | MR | JFM

[8] Iyama, O., Lerner, B.: Tilting bundles on orders on $\mathbb{P}^d$. Isr. J. Math. 211 (2016), 147-169. | DOI | MR | JFM

[9] Keller, B.: On triangulated orbit categories. Doc. Math. 10 (2005), 21-56. | MR | JFM

[10] Mendoza, O., Santiago, V.: Homological systems in triangulated categories. Appl. Categ. Struct. 24 (2016), 1-35. | DOI | MR | JFM

[11] Nakaoka, H., Palu, Y.: Mutation via Hovey twin cotorsion pairs and model structures in extriangulated categories. Available at | arXiv

[12] Zhou, P. Y., Zhu, B.: Triangulated quotient categories revisited. J. Algebra 502 (2018), 196-232. | DOI | MR | JFM

Cité par Sources :