Extensions of covariantly finite subcategories revisited
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 403-415.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Extriangulated categories were introduced by Nakaoka and Palu by extracting the similarities between exact categories and triangulated categories. A notion of homotopy cartesian square in an extriangulated category is defined in this article. We prove that in an extriangulated category with enough projective objects, the extension subcategory of two covariantly finite subcategories is covariantly finite. As an application, we give a simultaneous generalization of a result of X. W. Chen (2009) and of a result of R. Gentle, G. Todorov (1996).
DOI : 10.21136/CMJ.2018.0338-17
Classification : 18E10, 18E30
Keywords: extriangulated category; covariantly finite subcategory
@article{10_21136_CMJ_2018_0338_17,
     author = {He, Jing},
     title = {Extensions of covariantly finite subcategories revisited},
     journal = {Czechoslovak Mathematical Journal},
     pages = {403--415},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.21136/CMJ.2018.0338-17},
     mrnumber = {3959953},
     zbl = {07088793},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0338-17/}
}
TY  - JOUR
AU  - He, Jing
TI  - Extensions of covariantly finite subcategories revisited
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 403
EP  - 415
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0338-17/
DO  - 10.21136/CMJ.2018.0338-17
LA  - en
ID  - 10_21136_CMJ_2018_0338_17
ER  - 
%0 Journal Article
%A He, Jing
%T Extensions of covariantly finite subcategories revisited
%J Czechoslovak Mathematical Journal
%D 2019
%P 403-415
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0338-17/
%R 10.21136/CMJ.2018.0338-17
%G en
%F 10_21136_CMJ_2018_0338_17
He, Jing. Extensions of covariantly finite subcategories revisited. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 403-415. doi : 10.21136/CMJ.2018.0338-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0338-17/

Cité par Sources :