Keywords: extriangulated category; covariantly finite subcategory
@article{10_21136_CMJ_2018_0338_17,
author = {He, Jing},
title = {Extensions of covariantly finite subcategories revisited},
journal = {Czechoslovak Mathematical Journal},
pages = {403--415},
year = {2019},
volume = {69},
number = {2},
doi = {10.21136/CMJ.2018.0338-17},
mrnumber = {3959953},
zbl = {07088793},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0338-17/}
}
TY - JOUR AU - He, Jing TI - Extensions of covariantly finite subcategories revisited JO - Czechoslovak Mathematical Journal PY - 2019 SP - 403 EP - 415 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0338-17/ DO - 10.21136/CMJ.2018.0338-17 LA - en ID - 10_21136_CMJ_2018_0338_17 ER -
He, Jing. Extensions of covariantly finite subcategories revisited. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 403-415. doi: 10.21136/CMJ.2018.0338-17
[1] Auslander, M., Reiten, I.: Applications of contravariantly finite subcategories. Adv. Math. 86 (1991), 111-152. | DOI | MR | JFM
[2] Barot, M., Kussin, D., Lenzing, H.: The Grothendieck group of a cluster category. J. Pure Appl. Algebra 212 (2008), 33-46. | DOI | MR | JFM
[3] Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories. Mem. Amer. Math. Soc. 188 (2007). | DOI | MR | JFM
[4] Bühler, T.: Exact categories. Expo. Math. 28 (2010), 1-69. | DOI | MR | JFM
[5] Chen, X. W.: Extensions of covariantly finite subcategories. Arch. Math. 93 (2009), 29-35. | DOI | MR | JFM
[6] Gentle, R., Todorov, G.: Extensions, kernels and cokernels of homologically finite subcategories. Representation theory of algebras. Seventh international conference, August 22-26, 1994, Cocoyoc, Mexico Bautista, Raymundo et al. American Mathematical Society. CMS Conf. Proc. 18 (1996), 227-235. | MR | JFM
[7] Hügel, L. A., Marks, F., Vitória, J.: Silting modules and ring epimorphisms. Adv. Math. 303 (2016), 1044-1076. | DOI | MR | JFM
[8] Iyama, O., Lerner, B.: Tilting bundles on orders on $\mathbb{P}^d$. Isr. J. Math. 211 (2016), 147-169. | DOI | MR | JFM
[9] Keller, B.: On triangulated orbit categories. Doc. Math. 10 (2005), 21-56. | MR | JFM
[10] Mendoza, O., Santiago, V.: Homological systems in triangulated categories. Appl. Categ. Struct. 24 (2016), 1-35. | DOI | MR | JFM
[11] Nakaoka, H., Palu, Y.: Mutation via Hovey twin cotorsion pairs and model structures in extriangulated categories. Available at | arXiv
[12] Zhou, P. Y., Zhu, B.: Triangulated quotient categories revisited. J. Algebra 502 (2018), 196-232. | DOI | MR | JFM
Cité par Sources :