Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 77-94
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mu $ be a nonnegative Borel measure on $\mathbb R^d$ satisfying that $\mu (Q)\le l(Q)^n$ for every cube $Q\subset \mathbb R^n$, where $l(Q)$ is the side length of the cube $Q$ and $0$. \endgraf We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function $B$ in the context of non-homogeneous spaces related to the measure $\mu $. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W. Wang, C. Tan, Z. Lou (2012).
DOI :
10.21136/CMJ.2018.0337-16
Classification :
42B25
Keywords: non-homogeneous space; generalized fractional operator; weight
Keywords: non-homogeneous space; generalized fractional operator; weight
@article{10_21136_CMJ_2018_0337_16,
author = {Pradolini, Gladis and Recchi, Jorgelina},
title = {Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {77--94},
publisher = {mathdoc},
volume = {68},
number = {1},
year = {2018},
doi = {10.21136/CMJ.2018.0337-16},
mrnumber = {3783586},
zbl = {06861568},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0337-16/}
}
TY - JOUR AU - Pradolini, Gladis AU - Recchi, Jorgelina TI - Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces JO - Czechoslovak Mathematical Journal PY - 2018 SP - 77 EP - 94 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0337-16/ DO - 10.21136/CMJ.2018.0337-16 LA - en ID - 10_21136_CMJ_2018_0337_16 ER -
%0 Journal Article %A Pradolini, Gladis %A Recchi, Jorgelina %T Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces %J Czechoslovak Mathematical Journal %D 2018 %P 77-94 %V 68 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0337-16/ %R 10.21136/CMJ.2018.0337-16 %G en %F 10_21136_CMJ_2018_0337_16
Pradolini, Gladis; Recchi, Jorgelina. Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 77-94. doi: 10.21136/CMJ.2018.0337-16
Cité par Sources :