Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 379-390
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove boundedness and continuity for solutions to the Dirichlet problem for the equation \[ -{\rm div}(a(x,\nabla u))=h(x,u)+\mu ,\quad \text {in} \ \Omega \subset \mathbb R^N, \] where the left-hand side is a Leray-Lions operator from $W_0^{1,p} (\Omega )$ into $W^{-1,p'}(\Omega )$ with $1
We prove boundedness and continuity for solutions to the Dirichlet problem for the equation \[ -{\rm div}(a(x,\nabla u))=h(x,u)+\mu ,\quad \text {in} \ \Omega \subset \mathbb R^N, \] where the left-hand side is a Leray-Lions operator from $W_0^{1,p} (\Omega )$ into $W^{-1,p'}(\Omega )$ with $1$, $h(x,s)$ is a Carathéodory function which grows like $|s|^{p-1}$ and $\mu $ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of $\mu $.
DOI : 10.21136/CMJ.2018.0322-17
Classification : 35B45, 35B65, 35J15, 35J25, 35J60, 35J92
Keywords: bounded solution; $p$-Laplacian; renormalized solution; measure data
@article{10_21136_CMJ_2018_0322_17,
     author = {Dall'Aglio, Andrea and Segura de Le\'on, Sergio},
     title = {Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data},
     journal = {Czechoslovak Mathematical Journal},
     pages = {379--390},
     year = {2019},
     volume = {69},
     number = {2},
     doi = {10.21136/CMJ.2018.0322-17},
     mrnumber = {3959951},
     zbl = {07088791},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0322-17/}
}
TY  - JOUR
AU  - Dall'Aglio, Andrea
AU  - Segura de León, Sergio
TI  - Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 379
EP  - 390
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0322-17/
DO  - 10.21136/CMJ.2018.0322-17
LA  - en
ID  - 10_21136_CMJ_2018_0322_17
ER  - 
%0 Journal Article
%A Dall'Aglio, Andrea
%A Segura de León, Sergio
%T Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data
%J Czechoslovak Mathematical Journal
%D 2019
%P 379-390
%V 69
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0322-17/
%R 10.21136/CMJ.2018.0322-17
%G en
%F 10_21136_CMJ_2018_0322_17
Dall'Aglio, Andrea; Segura de León, Sergio. Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 379-390. doi: 10.21136/CMJ.2018.0322-17

[1] Hamid, H. Abdel, Bidaut-Veron, M. F.: On the connection between two quasilinear elliptic problems with source terms of order $0$ or $1$. Commun. Contemp. Math. 12 (2010), 727-788. | DOI | MR | JFM

[2] Abdellaoui, B., Dall'Aglio, A., Peral, I.: Some remarks on elliptic problems with critical growth in the gradient. J. Differ. Equations 222 (2006), 21-62 corrigendum ibid. 246 2988-2990 2009. | DOI | MR | JFM

[3] Abdellaoui, B., Dall'Aglio, A., León, S. Segura de: Multiplicity of solutions to elliptic problems involving the 1-Laplacian with a critical gradient term. Adv. Nonlinear Stud. 17 (2017), 333-353. | DOI | MR | JFM

[4] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. | MR | JFM

[5] Boccardo, L., Gallouët, T., Orsina, L.: Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13 (1996), 539-551. | DOI | MR | JFM

[6] Boccardo, L., Leonori, T.: Local properties of solutions of elliptic equations depending on local properties of the data. Methods Appl. Anal. 15 (2008), 53-63. | DOI | MR | JFM

[7] Brézis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl., IX. Sér. 58 (1979), 137-151. | MR | JFM

[8] Maso, G. Dal, Murat, F., Orsina, L., Prignet, A.: Renormalization solutions of elliptic equations with general measure data. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 741-808. | MR | JFM

[9] Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003). | DOI | MR | JFM

[10] Grenon, N.: Existence results for semilinear elliptic equations with small measure data. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19 (2002), 1-11. | DOI | MR | JFM

[11] Jaye, B. J., Verbitsky, E.: Local and global behaviour of solutions to nonlinear equations with natural growth terms. Arch. Ration. Mech. Anal. 204 (2012), 627-681. | DOI | MR | JFM

[12] Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients. Ann. Inst. Fourier 15 (1965), 189-257 French. | DOI | MR | JFM

Cité par Sources :