Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 379-390
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We prove boundedness and continuity for solutions to the Dirichlet problem for the equation \[ -{\rm div}(a(x,\nabla u))=h(x,u)+\mu ,\quad \text {in} \ \Omega \subset \mathbb R^N, \] where the left-hand side is a Leray-Lions operator from $W_0^{1,p} (\Omega )$ into $W^{-1,p'}(\Omega )$ with $1$, $h(x,s)$ is a Carathéodory function which grows like $|s|^{p-1}$ and $\mu $ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of $\mu $.
We prove boundedness and continuity for solutions to the Dirichlet problem for the equation \[ -{\rm div}(a(x,\nabla u))=h(x,u)+\mu ,\quad \text {in} \ \Omega \subset \mathbb R^N, \] where the left-hand side is a Leray-Lions operator from $W_0^{1,p} (\Omega )$ into $W^{-1,p'}(\Omega )$ with $1$, $h(x,s)$ is a Carathéodory function which grows like $|s|^{p-1}$ and $\mu $ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of $\mu $.
DOI :
10.21136/CMJ.2018.0322-17
Classification :
35B45, 35B65, 35J15, 35J25, 35J60, 35J92
Keywords: bounded solution; $p$-Laplacian; renormalized solution; measure data
Keywords: bounded solution; $p$-Laplacian; renormalized solution; measure data
@article{10_21136_CMJ_2018_0322_17,
author = {Dall'Aglio, Andrea and Segura de Le\'on, Sergio},
title = {Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data},
journal = {Czechoslovak Mathematical Journal},
pages = {379--390},
year = {2019},
volume = {69},
number = {2},
doi = {10.21136/CMJ.2018.0322-17},
mrnumber = {3959951},
zbl = {07088791},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0322-17/}
}
TY - JOUR AU - Dall'Aglio, Andrea AU - Segura de León, Sergio TI - Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data JO - Czechoslovak Mathematical Journal PY - 2019 SP - 379 EP - 390 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0322-17/ DO - 10.21136/CMJ.2018.0322-17 LA - en ID - 10_21136_CMJ_2018_0322_17 ER -
%0 Journal Article %A Dall'Aglio, Andrea %A Segura de León, Sergio %T Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data %J Czechoslovak Mathematical Journal %D 2019 %P 379-390 %V 69 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0322-17/ %R 10.21136/CMJ.2018.0322-17 %G en %F 10_21136_CMJ_2018_0322_17
Dall'Aglio, Andrea; Segura de León, Sergio. Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 379-390. doi: 10.21136/CMJ.2018.0322-17
Cité par Sources :