Keywords: antilinear map; $\ast $-structure; Hopf $\ast $-algebra
@article{10_21136_CMJ_2018_0319_17,
author = {Mohammed, Hassan Suleman Esmael and Chen, Hui-Xiang},
title = {The structures of {Hopf} $\ast $-algebra on {Radford} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {365--377},
year = {2019},
volume = {69},
number = {2},
doi = {10.21136/CMJ.2018.0319-17},
mrnumber = {3959950},
zbl = {07088790},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0319-17/}
}
TY - JOUR AU - Mohammed, Hassan Suleman Esmael AU - Chen, Hui-Xiang TI - The structures of Hopf $\ast $-algebra on Radford algebras JO - Czechoslovak Mathematical Journal PY - 2019 SP - 365 EP - 377 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0319-17/ DO - 10.21136/CMJ.2018.0319-17 LA - en ID - 10_21136_CMJ_2018_0319_17 ER -
%0 Journal Article %A Mohammed, Hassan Suleman Esmael %A Chen, Hui-Xiang %T The structures of Hopf $\ast $-algebra on Radford algebras %J Czechoslovak Mathematical Journal %D 2019 %P 365-377 %V 69 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0319-17/ %R 10.21136/CMJ.2018.0319-17 %G en %F 10_21136_CMJ_2018_0319_17
Mohammed, Hassan Suleman Esmael; Chen, Hui-Xiang. The structures of Hopf $\ast $-algebra on Radford algebras. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 365-377. doi: 10.21136/CMJ.2018.0319-17
[1] Chen, H. X.: A class of noncommutative and noncocommutative Hopf algebras: The quantum version. Commun. Algebra 27 (1999), 5011-5023. | DOI | MR | JFM
[2] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155, Springer, New York (1995). | DOI | MR | JFM
[3] Lorenz, M.: Representations of finite-dimensional Hopf algebras. J. Algebra 188 (1997), 476-505. | DOI | MR | JFM
[4] Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM
[5] Masuda, T., Mimachi, K., Nakagami, Y., Noumi, M., Saburi, Y., Ueno, K.: Unitary representations of the quantum $ SU_q(1,1)$: Structure of the dual space of ${\cal U}_q( sl(2))$. Lett. Math. Phys. 19 (1990), 187-194. | DOI | MR | JFM
[6] Mohammed, H. S. E., Li, T., Chen, H.: Hopf $\ast$-algebra structures on $H(1,q)$. Front. Math. China 10 (2015), 1415-1432. | DOI | MR | JFM
[7] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics 82, American Mathematical Society, Providence (1993). | DOI | MR | JFM
[8] Podleś, P.: Complex quantum groups and their real representations. Publ. Res. Inst. Math. Sci. 28 (1992), 709-745. | DOI | MR | JFM
[9] Radford, D. E.: The order of the antipode of a finite dimensional Hopf algebra is finite. Am. J. Math. 98 (1976), 333-355. | DOI | MR | JFM
[10] Radford, D. E.: Hopf Algebras. Series on Knots and Everything 49, World Scientific, Hackensack (2012). | DOI | MR | JFM
[11] Sweedler, M. E.: Hopf Algebras. Mathematics Lecture Note Series, W. A. Benjamin, New York (1969). | MR | JFM
[12] Tucker-Simmons, M.: $\ast$-structures on module-algebras. Available at \ifPdf\pdfurl{ | arXiv
[13] Daele, A. Van: The Haar measure on a compact quantum group. Proc. Am. Math. Soc. 123 (1995), 3125-3128. | DOI | MR | JFM
[14] Woronowicz, S. L.: Compact matrix pseudogroups. Commun. Math. Phys. 111 (1987), 613-665. | DOI | MR | JFM
[15] Woronowicz, S. L.: Twisted $ SU(2)$ group. An example of non-commutative differential calculus. Publ. Res. Inst. Math. Sci. 23 (1987), 117-181. | DOI | MR | JFM
[16] Woronowicz, S. L.: Krein-Tannak duality for compact matrix pseudogroups. Twisted $ SU(N)$ groups. Invent. Math. 93 (1988), 35-76. | DOI | MR | JFM
Cité par Sources :