Boundedness of Littlewood-Paley operators relative to non-isotropic dilations
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 337-351.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider Littlewood-Paley functions associated with a non-isotropic dilation group on $\Bbb R^n$. We prove that certain Littlewood-Paley functions defined by kernels with no regularity concerning smoothness are bounded on weighted $L^p$ spaces, $1$, with weights of the Muckenhoupt class. This, in particular, generalizes a result of N. Rivière (1971).\looseness -1
DOI : 10.21136/CMJ.2018.0313-17
Classification : 42B25, 46E30
Keywords: Littlewood-Paley function; non-isotropic dilation
@article{10_21136_CMJ_2018_0313_17,
     author = {Sato, Shuichi},
     title = {Boundedness of {Littlewood-Paley} operators relative to non-isotropic dilations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {337--351},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.21136/CMJ.2018.0313-17},
     mrnumber = {3959948},
     zbl = {07088788},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0313-17/}
}
TY  - JOUR
AU  - Sato, Shuichi
TI  - Boundedness of Littlewood-Paley operators relative to non-isotropic dilations
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 337
EP  - 351
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0313-17/
DO  - 10.21136/CMJ.2018.0313-17
LA  - en
ID  - 10_21136_CMJ_2018_0313_17
ER  - 
%0 Journal Article
%A Sato, Shuichi
%T Boundedness of Littlewood-Paley operators relative to non-isotropic dilations
%J Czechoslovak Mathematical Journal
%D 2019
%P 337-351
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0313-17/
%R 10.21136/CMJ.2018.0313-17
%G en
%F 10_21136_CMJ_2018_0313_17
Sato, Shuichi. Boundedness of Littlewood-Paley operators relative to non-isotropic dilations. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 337-351. doi : 10.21136/CMJ.2018.0313-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0313-17/

Cité par Sources :