Strongly 2-nil-clean rings with involutions
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 317-330
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A $*$-ring $R$ is strongly 2-nil-$*$-clean if every element in $R$ is the sum of two projections and a nilpotent that commute. Fundamental properties of such $*$-rings are obtained. We prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if for all $a\in R$, $a^2\in R$ is strongly nil-$*$-clean, if and only if for any $a\in R$ there exists a $*$-tripotent $e\in R$ such that $a-e\in R$ is nilpotent and $ea=ae$, if and only if $R$ is a strongly $*$-clean SN ring, if and only if $R$ is abelian, $J(R)$ is nil and $R/J(R)$ is $*$-tripotent. Furthermore, we explore the structure of such rings and prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if $R$ is abelian and $R\cong R_1, R_2$ or $R_1\times R_2$, where $R_1/J(R_1)$ is a $*$-Boolean ring and $J(R_1)$ is nil, $R_2/J(R_2)$ is a $*$-Yaqub ring and $J(R_2)$ is nil. The uniqueness of projections of such rings are thereby investigated.
A $*$-ring $R$ is strongly 2-nil-$*$-clean if every element in $R$ is the sum of two projections and a nilpotent that commute. Fundamental properties of such $*$-rings are obtained. We prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if for all $a\in R$, $a^2\in R$ is strongly nil-$*$-clean, if and only if for any $a\in R$ there exists a $*$-tripotent $e\in R$ such that $a-e\in R$ is nilpotent and $ea=ae$, if and only if $R$ is a strongly $*$-clean SN ring, if and only if $R$ is abelian, $J(R)$ is nil and $R/J(R)$ is $*$-tripotent. Furthermore, we explore the structure of such rings and prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if $R$ is abelian and $R\cong R_1, R_2$ or $R_1\times R_2$, where $R_1/J(R_1)$ is a $*$-Boolean ring and $J(R_1)$ is nil, $R_2/J(R_2)$ is a $*$-Yaqub ring and $J(R_2)$ is nil. The uniqueness of projections of such rings are thereby investigated.
DOI : 10.21136/CMJ.2018.0291-17
Classification : 16E50, 16U99, 16W10
Keywords: nilpotent; projection; $*$-tripotent ring; symmetry; strongly $*$-clean ring
@article{10_21136_CMJ_2018_0291_17,
     author = {Chen, Huanyin and Sheibani Abdolyousefi, Marjan},
     title = {Strongly 2-nil-clean rings with involutions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {317--330},
     year = {2019},
     volume = {69},
     number = {2},
     doi = {10.21136/CMJ.2018.0291-17},
     mrnumber = {3959946},
     zbl = {07088786},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0291-17/}
}
TY  - JOUR
AU  - Chen, Huanyin
AU  - Sheibani Abdolyousefi, Marjan
TI  - Strongly 2-nil-clean rings with involutions
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 317
EP  - 330
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0291-17/
DO  - 10.21136/CMJ.2018.0291-17
LA  - en
ID  - 10_21136_CMJ_2018_0291_17
ER  - 
%0 Journal Article
%A Chen, Huanyin
%A Sheibani Abdolyousefi, Marjan
%T Strongly 2-nil-clean rings with involutions
%J Czechoslovak Mathematical Journal
%D 2019
%P 317-330
%V 69
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0291-17/
%R 10.21136/CMJ.2018.0291-17
%G en
%F 10_21136_CMJ_2018_0291_17
Chen, Huanyin; Sheibani Abdolyousefi, Marjan. Strongly 2-nil-clean rings with involutions. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 317-330. doi: 10.21136/CMJ.2018.0291-17

[1] Berberian, S. K.: Baer $*$-Rings. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 195, Springer, New York (1972). | DOI | MR | JFM

[2] Chen, H.: Rings Related to Stable Range Conditions. Series in Algebra 11, World Scientific, Hackensack (2011). | DOI | MR | JFM

[3] Chen, H., Harmancı, A., Özcan, A. Ç.: Strongly $J$-clean rings with involutions. Ring Theory and Its Applications Contemporary Mathematics 609, American Mathematical Society, Providence D. V. Huynh, et al. (2014), 33-44. | DOI | MR | JFM

[4] Chen, H., Sheibani, M.: Strongly 2-nil-clean rings. J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. | DOI | MR | JFM

[5] Cui, J., Wang, Z.: A note on strongly $*$-clean rings. J. Korean Math. Soc. 52 (2015), 839-851. | DOI | MR | JFM

[6] Danchev, P. V.: Weakly UU rings. Tsukuba J. Math. 40 (2016), 101-118. | DOI | MR | JFM

[7] Danchev, P. V.: Invo-clean unital rings. Commun. Korean Math. Soc. 32 (2017), 19-27. | DOI | MR | JFM

[8] Gao, Y., Chen, J., Li, Y.: Some $*$-clean group rings. Algebra Colloq. 22 (2015), 169-180. | DOI | MR | JFM

[9] Han, D., Ren, Y., Zhang, H.: On $*$-clean group rings over abelian groups. J. Algebra Appl. 16 (2017), Article ID 1750152, 11 pages. | DOI | MR | JFM

[10] Hirano, Y., Tominaga, H.: Rings in which every element is the sum of two idempotents. Bull. Aust. Math. Soc. 37 (1988), 161-164. | DOI | MR | JFM

[11] Huang, H., Li, Y., Yuan, P.: On $*$-clean group rings II. Commun. Algebra 44 (2016), 3171-3181. | DOI | MR | JFM

[12] Koşan, T., Wang, Z., Zhou, Y.: Nil-clean and strongly nil-clean rings. J. Pure Appl. Algebra 220 (2016), 633-646. | DOI | MR | JFM

[13] Li, Y., Parmenter, M. M., Yuan, P.: On $*$-clean group rings. J. Algebra Appl. 14 (2015), Article ID 1550004, 11 pages. | DOI | MR | JFM

[14] Li, C., Zhou, Y.: On strongly $*$-clean rings. J. Algebra Appl. 10 (2011), 1363-1370. | DOI | MR | JFM

[15] Ying, Z., Koşan, T., Zhou, Y.: Rings in which every element is a sum of two tripotents. Can. Math. Bull. 59 (2016), 661-672. | DOI | MR | JFM

Cité par Sources :