Keywords: nilpotent; projection; $*$-tripotent ring; symmetry; strongly $*$-clean ring
@article{10_21136_CMJ_2018_0291_17,
author = {Chen, Huanyin and Sheibani Abdolyousefi, Marjan},
title = {Strongly 2-nil-clean rings with involutions},
journal = {Czechoslovak Mathematical Journal},
pages = {317--330},
year = {2019},
volume = {69},
number = {2},
doi = {10.21136/CMJ.2018.0291-17},
mrnumber = {3959946},
zbl = {07088786},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0291-17/}
}
TY - JOUR AU - Chen, Huanyin AU - Sheibani Abdolyousefi, Marjan TI - Strongly 2-nil-clean rings with involutions JO - Czechoslovak Mathematical Journal PY - 2019 SP - 317 EP - 330 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0291-17/ DO - 10.21136/CMJ.2018.0291-17 LA - en ID - 10_21136_CMJ_2018_0291_17 ER -
%0 Journal Article %A Chen, Huanyin %A Sheibani Abdolyousefi, Marjan %T Strongly 2-nil-clean rings with involutions %J Czechoslovak Mathematical Journal %D 2019 %P 317-330 %V 69 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0291-17/ %R 10.21136/CMJ.2018.0291-17 %G en %F 10_21136_CMJ_2018_0291_17
Chen, Huanyin; Sheibani Abdolyousefi, Marjan. Strongly 2-nil-clean rings with involutions. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 2, pp. 317-330. doi: 10.21136/CMJ.2018.0291-17
[1] Berberian, S. K.: Baer $*$-Rings. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 195, Springer, New York (1972). | DOI | MR | JFM
[2] Chen, H.: Rings Related to Stable Range Conditions. Series in Algebra 11, World Scientific, Hackensack (2011). | DOI | MR | JFM
[3] Chen, H., Harmancı, A., Özcan, A. Ç.: Strongly $J$-clean rings with involutions. Ring Theory and Its Applications Contemporary Mathematics 609, American Mathematical Society, Providence D. V. Huynh, et al. (2014), 33-44. | DOI | MR | JFM
[4] Chen, H., Sheibani, M.: Strongly 2-nil-clean rings. J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. | DOI | MR | JFM
[5] Cui, J., Wang, Z.: A note on strongly $*$-clean rings. J. Korean Math. Soc. 52 (2015), 839-851. | DOI | MR | JFM
[6] Danchev, P. V.: Weakly UU rings. Tsukuba J. Math. 40 (2016), 101-118. | DOI | MR | JFM
[7] Danchev, P. V.: Invo-clean unital rings. Commun. Korean Math. Soc. 32 (2017), 19-27. | DOI | MR | JFM
[8] Gao, Y., Chen, J., Li, Y.: Some $*$-clean group rings. Algebra Colloq. 22 (2015), 169-180. | DOI | MR | JFM
[9] Han, D., Ren, Y., Zhang, H.: On $*$-clean group rings over abelian groups. J. Algebra Appl. 16 (2017), Article ID 1750152, 11 pages. | DOI | MR | JFM
[10] Hirano, Y., Tominaga, H.: Rings in which every element is the sum of two idempotents. Bull. Aust. Math. Soc. 37 (1988), 161-164. | DOI | MR | JFM
[11] Huang, H., Li, Y., Yuan, P.: On $*$-clean group rings II. Commun. Algebra 44 (2016), 3171-3181. | DOI | MR | JFM
[12] Koşan, T., Wang, Z., Zhou, Y.: Nil-clean and strongly nil-clean rings. J. Pure Appl. Algebra 220 (2016), 633-646. | DOI | MR | JFM
[13] Li, Y., Parmenter, M. M., Yuan, P.: On $*$-clean group rings. J. Algebra Appl. 14 (2015), Article ID 1550004, 11 pages. | DOI | MR | JFM
[14] Li, C., Zhou, Y.: On strongly $*$-clean rings. J. Algebra Appl. 10 (2011), 1363-1370. | DOI | MR | JFM
[15] Ying, Z., Koşan, T., Zhou, Y.: Rings in which every element is a sum of two tripotents. Can. Math. Bull. 59 (2016), 661-672. | DOI | MR | JFM
Cité par Sources :