Universal central extension of direct limits of Hom-Lie algebras
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 275-293
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that the universal central extension of a direct limit of perfect Hom-Lie algebras $(\mathcal {L}_i, \alpha _{\mathcal {L}_i})$ is (isomorphic to) the direct limit of universal central extensions of $(\mathcal {L}_i, \alpha _{\mathcal {L}_i})$. As an application we provide the universal central extensions of some multiplicative Hom-Lie algebras. More precisely, we consider a family of multiplicative Hom-Lie algebras $\{({\rm sl}_{k}(å), \alpha _k)\}_{k\in I}$ and describe the universal central extension of its direct limit.
We prove that the universal central extension of a direct limit of perfect Hom-Lie algebras $(\mathcal {L}_i, \alpha _{\mathcal {L}_i})$ is (isomorphic to) the direct limit of universal central extensions of $(\mathcal {L}_i, \alpha _{\mathcal {L}_i})$. As an application we provide the universal central extensions of some multiplicative Hom-Lie algebras. More precisely, we consider a family of multiplicative Hom-Lie algebras $\{({\rm sl}_{k}(å), \alpha _k)\}_{k\in I}$ and describe the universal central extension of its direct limit.
DOI : 10.21136/CMJ.2018.0290-17
Classification : 17A30, 17B55, 17B60, 17B99
Keywords: Hom-Lie algebra; extension of Hom-Lie algebras and its direct limit
@article{10_21136_CMJ_2018_0290_17,
     author = {Khalili, Valiollah},
     title = {Universal central extension of direct limits of {Hom-Lie} algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {275--293},
     year = {2019},
     volume = {69},
     number = {1},
     doi = {10.21136/CMJ.2018.0290-17},
     mrnumber = {3923589},
     zbl = {07088784},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0290-17/}
}
TY  - JOUR
AU  - Khalili, Valiollah
TI  - Universal central extension of direct limits of Hom-Lie algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 275
EP  - 293
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0290-17/
DO  - 10.21136/CMJ.2018.0290-17
LA  - en
ID  - 10_21136_CMJ_2018_0290_17
ER  - 
%0 Journal Article
%A Khalili, Valiollah
%T Universal central extension of direct limits of Hom-Lie algebras
%J Czechoslovak Mathematical Journal
%D 2019
%P 275-293
%V 69
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0290-17/
%R 10.21136/CMJ.2018.0290-17
%G en
%F 10_21136_CMJ_2018_0290_17
Khalili, Valiollah. Universal central extension of direct limits of Hom-Lie algebras. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 275-293. doi: 10.21136/CMJ.2018.0290-17

[1] Alison, B., Benkart, G., Gao, Y.: Central extensions of Lie algebras graded by finite root systems. Math. Ann. 316 (2000), 499-527. | DOI | MR | JFM

[2] Ammar, F., Ejbehi, Z., Makhlouf, A.: Cohomology and deformations of Hom-algebras. J. Lie Theory 24 (2011), 813-836. | MR | JFM

[3] Ammar, F., Mobrouk, S., Makhlouf, A.: Representations and cohomology of $n$-ary multiplicative Hom-Nambu-Lie algebras. J. Geom. Phys. 61 (2011), 1898-1913. | DOI | MR | JFM

[4] Periñán, M. J. Aragón, Martín, A. J. Calderón: On graded matrix Hom-algebras. Electron. J. Linear Algebra 24 (2012), 45-65. | DOI | MR | JFM

[5] Arnal, D., Bakbrahem, W., Makhlouf, A.: Quadratic and Pinczon algebras. Available at https://arxiv.org/pdf/1603.00435

[6] Azam, S., Behbodi, G., Yousofzadeh, M.: Direct union of Lie tori (realization of locally extended affine Lie algebras). Commun. Algebra 44 (2016), 5309-5341. | DOI | MR | JFM

[7] Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. J. Geom. Phys. 76 (2014), 38-60. | DOI | MR | JFM

[8] Bloch, S.: The dilogarithm and extensions of Lie algebras. Algebra $K$-Theory, 1980 Lecture Notes in Math. 854 Springer, Berlin (1981), 1-23. | DOI | MR | JFM

[9] Bourbaki, N.: Éléments de mathématique. Algèbre. Chapitres 1 à 3. Hermann, Paris (1970), French. | DOI | MR | JFM

[10] Casas, J. M., Insua, M. A., Pacheco, N.: On universal central extensions of Hom-Lie algebras. Hacet. J. Math Stat. 44 (2015), 277-288. | DOI | MR | JFM

[11] Cheng, Y., Su, Y.: (Co)homology and universal central extension of Hom-Leibniz algebras. Acta Math. Sin., Engl. Ser. 27 (2011), 813-830. | DOI | MR | JFM

[12] Cheng, Y., Su, Y.: Quantum deformations of the Heisenberg-Virasoro algebra. Algebra Colloq. 20 (2013), 299-308. | DOI | MR | JFM

[13] Frégier, Y., Gohr, A., Silvestrov, S. D.: Unital algebras of Hom-associative type and surjective or injective twistings. J. Gen. Lie Theory Appl. 3 (2009), 285-295. | DOI | MR | JFM

[14] Gao, Y., Shang, S.: Universal coverings of Steinberg Lie algebras of small characteristic. J. Algebra. 311 (2007), 216-230. | DOI | MR | JFM

[15] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-\hskip0ptderivations. J. Algebra 295 (2006), 314-361. | DOI | MR | JFM

[16] Jin, Q., Li, X.: Hom-Lie algebra structures on semi-simple Lie algebras. J. Algebra 319 (2008), 1398-1408. | DOI | MR | JFM

[17] Kassel, C., Loday, J.-L.: Central extensions of Lie algebras. Ann. Inst. Fourier 32 (1982), 119-142 French. | DOI | MR | JFM

[18] Khalili, V.: On universal coverings of Lie tori. Bull. Korean Math. Soc. 49 (2012), 1199-1211. | DOI | MR | JFM

[19] Li, X.: Representations of 3-dimensional simple multiplicative Hom-Lie algebras. Adv. Math. Phys. 2013 Article ID 938901, 7 pages. | DOI | MR | JFM

[20] Makhlouf, A., Silvestrov, S.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2 (2008), 51-64. | DOI | MR | JFM

[21] Makhlouf, A., Silvestrov, S.: Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras. Forum Math. 22 (2010), 715-739. | DOI | MR | JFM

[22] Moody, R. V., Pianzola, A.: Lie Algebras with Triangular Decompositions. Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York (1995). | MR | JFM

[23] Neeb, K.-H.: Universal central extensions of Lie groups. Acts Appl. Math. 73 (2002), 175-219. | DOI | MR | JFM

[24] Neher, E.: An introduction to universal central extensions of Lie superalgebras. Groups, Rings, Lie and Hopf Algebras, 2001 Math. Appl. 555, Kluwer Academic Publishers, Dordrecht Y. Bahturin (2003), 141-166. | DOI | MR | JFM

[25] Neher, E., Sun, J.: Universal central extensions of direct limits of Lie superalgebras. J. Algebra 368 (2012), 169-181. | DOI | MR | JFM

[26] Sheng, Y.: Representations of Hom-Lie algebras. Alger. Represent. Theory 15 (2012), 1081-1098. | DOI | MR | JFM

[27] Kallen, W. L. J. van der: Infinitesimally Central Extensions of Chevalley Groups. Lecture Notes in Mathematics 356, Springer, Berlin (1973). | DOI | MR | JFM

[28] Weibel, C. A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge (1994). | DOI | MR | JFM

[29] Yau, D.: Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl. 2 (2008), 95-108. | DOI | MR | JFM

[30] Yau, D.: Hom-algebras and homology. J. Lie Theory 19 (2009), 409-421. | MR | JFM

Cité par Sources :