Keywords: central limit theorem; dyadic diffusion; fractional diffusion; stable process; wavelet analysis
@article{10_21136_CMJ_2018_0274_17,
author = {Aimar, Hugo and G\'omez, Ivana and Morana, Federico},
title = {The dyadic fractional diffusion kernel as a central limit},
journal = {Czechoslovak Mathematical Journal},
pages = {235--255},
year = {2019},
volume = {69},
number = {1},
doi = {10.21136/CMJ.2018.0274-17},
mrnumber = {3923587},
zbl = {07088782},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0274-17/}
}
TY - JOUR AU - Aimar, Hugo AU - Gómez, Ivana AU - Morana, Federico TI - The dyadic fractional diffusion kernel as a central limit JO - Czechoslovak Mathematical Journal PY - 2019 SP - 235 EP - 255 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0274-17/ DO - 10.21136/CMJ.2018.0274-17 LA - en ID - 10_21136_CMJ_2018_0274_17 ER -
%0 Journal Article %A Aimar, Hugo %A Gómez, Ivana %A Morana, Federico %T The dyadic fractional diffusion kernel as a central limit %J Czechoslovak Mathematical Journal %D 2019 %P 235-255 %V 69 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0274-17/ %R 10.21136/CMJ.2018.0274-17 %G en %F 10_21136_CMJ_2018_0274_17
Aimar, Hugo; Gómez, Ivana; Morana, Federico. The dyadic fractional diffusion kernel as a central limit. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 235-255. doi: 10.21136/CMJ.2018.0274-17
[1] Actis, M., Aimar, H.: Dyadic nonlocal diffusions in metric measure spaces. Fract. Calc. Appl. Anal. 18 (2015), 762-788. | DOI | MR | JFM
[2] Actis, M., Aimar, H.: Pointwise convergence to the initial data for nonlocal dyadic diffusions. Czech. Math. J. 66 (2016), 193-204. | DOI | MR | JFM
[3] Aimar, H., Bongioanni, B., Gómez, I.: On dyadic nonlocal Schrödinger equations with Besov initial data. J. Math. Anal. Appl. 407 (2013), 23-34. | DOI | MR | JFM
[4] Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana 20, Springer, Cham (2016). | DOI | MR | JFM
[5] Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equations 32 (2007), 1245-1260. | DOI | MR | JFM
[6] Chung, K. L.: A Course in Probability Theory. Academic Press, San Diego (2001). | MR | JFM
[7] Dipierro, S., Medina, M., Valdinoci, E.: Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb R^n$. Appunti. Scuola Normale Superiore di Pisa (Nuova Series) 15, Edizioni della Normale, Pisa (2017). | DOI | MR | JFM
[8] Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl., S$\vec{ {e}}$MA 49 (2009), 33-44. | MR | JFM
[9] Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. London Mathematical Society Student Texts 37, Cambridge University Press, Cambridge (1997). | DOI | MR | JFM
Cité par Sources :