The dyadic fractional diffusion kernel as a central limit
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 235-255
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We obtain the fundamental solution kernel of dyadic diffusions in $\mathbb {R}^+$ as a central limit of dyadic mollification of iterations of stable Markov kernels. The main tool is provided by the substitution of classical Fourier analysis by Haar wavelet analysis.
DOI :
10.21136/CMJ.2018.0274-17
Classification :
35R11, 60F05, 60G52
Keywords: central limit theorem; dyadic diffusion; fractional diffusion; stable process; wavelet analysis
Keywords: central limit theorem; dyadic diffusion; fractional diffusion; stable process; wavelet analysis
@article{10_21136_CMJ_2018_0274_17,
author = {Aimar, Hugo and G\'omez, Ivana and Morana, Federico},
title = {The dyadic fractional diffusion kernel as a central limit},
journal = {Czechoslovak Mathematical Journal},
pages = {235--255},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2019},
doi = {10.21136/CMJ.2018.0274-17},
mrnumber = {3923587},
zbl = {07088782},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0274-17/}
}
TY - JOUR AU - Aimar, Hugo AU - Gómez, Ivana AU - Morana, Federico TI - The dyadic fractional diffusion kernel as a central limit JO - Czechoslovak Mathematical Journal PY - 2019 SP - 235 EP - 255 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0274-17/ DO - 10.21136/CMJ.2018.0274-17 LA - en ID - 10_21136_CMJ_2018_0274_17 ER -
%0 Journal Article %A Aimar, Hugo %A Gómez, Ivana %A Morana, Federico %T The dyadic fractional diffusion kernel as a central limit %J Czechoslovak Mathematical Journal %D 2019 %P 235-255 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0274-17/ %R 10.21136/CMJ.2018.0274-17 %G en %F 10_21136_CMJ_2018_0274_17
Aimar, Hugo; Gómez, Ivana; Morana, Federico. The dyadic fractional diffusion kernel as a central limit. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 235-255. doi: 10.21136/CMJ.2018.0274-17
Cité par Sources :