Annihilators of local homology modules
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 225-234
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $(R,{\mathfrak m})$ be a local ring, $\mathfrak a$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module of Noetherian dimension $n$ with ${\rm hd}(\mathfrak a, M)=n $. We determine the annihilator of the top local homology module ${\rm H}_{n}^{\mathfrak a}(M)$. In fact, we prove that $$ {\rm Ann}_R({\rm H}_{n}^{\mathfrak a}(M))={\rm Ann}_R(N(\frak a,M)), $$ where $N(\mathfrak a,M)$ denotes the smallest submodule of $M$ such that ${\rm hd}({\mathfrak a},M/N(\frak a,M))$. As a consequence, it follows that for a complete local ring $(R,\mathfrak m)$ all associated primes of ${\rm H}_{n}^{\mathfrak a}(M) $ are minimal.
DOI :
10.21136/CMJ.2018.0263-17
Classification :
13D45, 13E05
Keywords: local homology; Artinian modules; annihilator
Keywords: local homology; Artinian modules; annihilator
@article{10_21136_CMJ_2018_0263_17,
author = {Rezaei, Shahram},
title = {Annihilators of local homology modules},
journal = {Czechoslovak Mathematical Journal},
pages = {225--234},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2019},
doi = {10.21136/CMJ.2018.0263-17},
mrnumber = {3923586},
zbl = {07088781},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0263-17/}
}
TY - JOUR AU - Rezaei, Shahram TI - Annihilators of local homology modules JO - Czechoslovak Mathematical Journal PY - 2019 SP - 225 EP - 234 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0263-17/ DO - 10.21136/CMJ.2018.0263-17 LA - en ID - 10_21136_CMJ_2018_0263_17 ER -
Rezaei, Shahram. Annihilators of local homology modules. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 225-234. doi: 10.21136/CMJ.2018.0263-17
Cité par Sources :