Annihilators of local homology modules
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 225-234 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(R,{\mathfrak m})$ be a local ring, $\mathfrak a$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module of Noetherian dimension $n$ with ${\rm hd}(\mathfrak a, M)=n $. We determine the annihilator of the top local homology module ${\rm H}_{n}^{\mathfrak a}(M)$. In fact, we prove that $$ {\rm Ann}_R({\rm H}_{n}^{\mathfrak a}(M))={\rm Ann}_R(N(\frak a,M)), $$ where $N(\mathfrak a,M)$ denotes the smallest submodule of $M$ such that ${\rm hd}({\mathfrak a},M/N(\frak a,M))
Let $(R,{\mathfrak m})$ be a local ring, $\mathfrak a$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module of Noetherian dimension $n$ with ${\rm hd}(\mathfrak a, M)=n $. We determine the annihilator of the top local homology module ${\rm H}_{n}^{\mathfrak a}(M)$. In fact, we prove that $$ {\rm Ann}_R({\rm H}_{n}^{\mathfrak a}(M))={\rm Ann}_R(N(\frak a,M)), $$ where $N(\mathfrak a,M)$ denotes the smallest submodule of $M$ such that ${\rm hd}({\mathfrak a},M/N(\frak a,M))$. As a consequence, it follows that for a complete local ring $(R,\mathfrak m)$ all associated primes of ${\rm H}_{n}^{\mathfrak a}(M) $ are minimal.
DOI : 10.21136/CMJ.2018.0263-17
Classification : 13D45, 13E05
Keywords: local homology; Artinian modules; annihilator
@article{10_21136_CMJ_2018_0263_17,
     author = {Rezaei, Shahram},
     title = {Annihilators of local homology modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {225--234},
     year = {2019},
     volume = {69},
     number = {1},
     doi = {10.21136/CMJ.2018.0263-17},
     mrnumber = {3923586},
     zbl = {07088781},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0263-17/}
}
TY  - JOUR
AU  - Rezaei, Shahram
TI  - Annihilators of local homology modules
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 225
EP  - 234
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0263-17/
DO  - 10.21136/CMJ.2018.0263-17
LA  - en
ID  - 10_21136_CMJ_2018_0263_17
ER  - 
%0 Journal Article
%A Rezaei, Shahram
%T Annihilators of local homology modules
%J Czechoslovak Mathematical Journal
%D 2019
%P 225-234
%V 69
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0263-17/
%R 10.21136/CMJ.2018.0263-17
%G en
%F 10_21136_CMJ_2018_0263_17
Rezaei, Shahram. Annihilators of local homology modules. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 225-234. doi: 10.21136/CMJ.2018.0263-17

[1] Atazadeh, A., Sedghi, M., Naghipour, R.: On the annihilators and attached primes of top local cohomology modules. Arch. Math. 102 (2014), 225-236. | DOI | MR | JFM

[2] Bahmanpour, K.: Annihilators of local cohomology modules. Commun. Algebra 43 (2015), 2509-2515. | DOI | MR | JFM

[3] Bahmanpour, K., Azami, J., Ghasemi, G.: On the annihilators of local cohomology modules. J. Algebra 363 (2012), 8-13. | DOI | MR | JFM

[4] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[5] Cuong, N. T., Nam, T. T.: The $I$-adic completion and local homology for Artinian modules. Math. Proc. Camb. Philos. Soc. 131 (2001), 61-72. | DOI | MR | JFM

[6] Cuong, N. T., Nam, T. T.: A local homology theory for linearly compact modules. J. Algebra 319 (2008), 4712-4737. | DOI | MR | JFM

[7] Cuong, N. T., Nhan, L. T.: On the Noetherian dimension of Artinian modules. Vietnam J. Math. 30 (2002), 121-130. | MR | JFM

[8] Divaani-Aazar, K., Naghipour, R., Tousi, M.: Cohomological dimension of certain algebraic varieties. Proc. Am. Math. Soc. 130 (2002), 3537-3544. | DOI | MR | JFM

[9] Greenless, J. P. C., May, J. P.: Derived functors of $I$-adic completion and local homology. J. Algebra 149 (1992), 438-453. | DOI | MR | JFM

[10] Kirby, D.: Dimension and length for Artinian modules. Q. J. Math., Oxf. II. Ser. 41 (1990), 419-429. | DOI | MR | JFM

[11] Ooishi, A.: Matlis duality and the width of a module. Hiroshima Math. J. 6 (1976), 573-587. | DOI | MR | JFM

[12] Rezaei, S.: Associated primes of top local homology modules with respect to an ideal. Acta Math. Univ. Comen., New Ser. 81 (2012), 197-202. | MR | JFM

[13] Rezaei, S.: Some results on top local cohomology and top formal local cohomology modules. Commun. Algebra 45 (2017), 1935-1940. | DOI | MR | JFM

[14] Roberts, R. N.: Krull dimension for Artinian modules over quasi local commutative rings. Quart. J. Math. Oxford Ser. (2) 26 (1975), 269-273. | DOI | MR | JFM

[15] Sharp, R. Y.: Some results on the vanishing of local cohomology modules. Proc. Lond. Math. Soc., III. Ser. 30 (1975), 177-195. | DOI | MR | JFM

[16] Tang, Z.: Local homology theory for Artinian modules. Commun. Algebra 22 (1994), 1675-1684. | DOI | MR | JFM

Cité par Sources :