Keywords: local homology; Artinian modules; annihilator
@article{10_21136_CMJ_2018_0263_17,
author = {Rezaei, Shahram},
title = {Annihilators of local homology modules},
journal = {Czechoslovak Mathematical Journal},
pages = {225--234},
year = {2019},
volume = {69},
number = {1},
doi = {10.21136/CMJ.2018.0263-17},
mrnumber = {3923586},
zbl = {07088781},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0263-17/}
}
Rezaei, Shahram. Annihilators of local homology modules. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 225-234. doi: 10.21136/CMJ.2018.0263-17
[1] Atazadeh, A., Sedghi, M., Naghipour, R.: On the annihilators and attached primes of top local cohomology modules. Arch. Math. 102 (2014), 225-236. | DOI | MR | JFM
[2] Bahmanpour, K.: Annihilators of local cohomology modules. Commun. Algebra 43 (2015), 2509-2515. | DOI | MR | JFM
[3] Bahmanpour, K., Azami, J., Ghasemi, G.: On the annihilators of local cohomology modules. J. Algebra 363 (2012), 8-13. | DOI | MR | JFM
[4] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). | DOI | MR | JFM
[5] Cuong, N. T., Nam, T. T.: The $I$-adic completion and local homology for Artinian modules. Math. Proc. Camb. Philos. Soc. 131 (2001), 61-72. | DOI | MR | JFM
[6] Cuong, N. T., Nam, T. T.: A local homology theory for linearly compact modules. J. Algebra 319 (2008), 4712-4737. | DOI | MR | JFM
[7] Cuong, N. T., Nhan, L. T.: On the Noetherian dimension of Artinian modules. Vietnam J. Math. 30 (2002), 121-130. | MR | JFM
[8] Divaani-Aazar, K., Naghipour, R., Tousi, M.: Cohomological dimension of certain algebraic varieties. Proc. Am. Math. Soc. 130 (2002), 3537-3544. | DOI | MR | JFM
[9] Greenless, J. P. C., May, J. P.: Derived functors of $I$-adic completion and local homology. J. Algebra 149 (1992), 438-453. | DOI | MR | JFM
[10] Kirby, D.: Dimension and length for Artinian modules. Q. J. Math., Oxf. II. Ser. 41 (1990), 419-429. | DOI | MR | JFM
[11] Ooishi, A.: Matlis duality and the width of a module. Hiroshima Math. J. 6 (1976), 573-587. | DOI | MR | JFM
[12] Rezaei, S.: Associated primes of top local homology modules with respect to an ideal. Acta Math. Univ. Comen., New Ser. 81 (2012), 197-202. | MR | JFM
[13] Rezaei, S.: Some results on top local cohomology and top formal local cohomology modules. Commun. Algebra 45 (2017), 1935-1940. | DOI | MR | JFM
[14] Roberts, R. N.: Krull dimension for Artinian modules over quasi local commutative rings. Quart. J. Math. Oxford Ser. (2) 26 (1975), 269-273. | DOI | MR | JFM
[15] Sharp, R. Y.: Some results on the vanishing of local cohomology modules. Proc. Lond. Math. Soc., III. Ser. 30 (1975), 177-195. | DOI | MR | JFM
[16] Tang, Z.: Local homology theory for Artinian modules. Commun. Algebra 22 (1994), 1675-1684. | DOI | MR | JFM
Cité par Sources :