Annihilators of local homology modules
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 225-234.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(R,{\mathfrak m})$ be a local ring, $\mathfrak a$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module of Noetherian dimension $n$ with ${\rm hd}(\mathfrak a, M)=n $. We determine the annihilator of the top local homology module ${\rm H}_{n}^{\mathfrak a}(M)$. In fact, we prove that $$ {\rm Ann}_R({\rm H}_{n}^{\mathfrak a}(M))={\rm Ann}_R(N(\frak a,M)), $$ where $N(\mathfrak a,M)$ denotes the smallest submodule of $M$ such that ${\rm hd}({\mathfrak a},M/N(\frak a,M))$. As a consequence, it follows that for a complete local ring $(R,\mathfrak m)$ all associated primes of ${\rm H}_{n}^{\mathfrak a}(M) $ are minimal.
DOI : 10.21136/CMJ.2018.0263-17
Classification : 13D45, 13E05
Keywords: local homology; Artinian modules; annihilator
@article{10_21136_CMJ_2018_0263_17,
     author = {Rezaei, Shahram},
     title = {Annihilators of local homology modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {225--234},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.21136/CMJ.2018.0263-17},
     mrnumber = {3923586},
     zbl = {07088781},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0263-17/}
}
TY  - JOUR
AU  - Rezaei, Shahram
TI  - Annihilators of local homology modules
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 225
EP  - 234
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0263-17/
DO  - 10.21136/CMJ.2018.0263-17
LA  - en
ID  - 10_21136_CMJ_2018_0263_17
ER  - 
%0 Journal Article
%A Rezaei, Shahram
%T Annihilators of local homology modules
%J Czechoslovak Mathematical Journal
%D 2019
%P 225-234
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0263-17/
%R 10.21136/CMJ.2018.0263-17
%G en
%F 10_21136_CMJ_2018_0263_17
Rezaei, Shahram. Annihilators of local homology modules. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 225-234. doi : 10.21136/CMJ.2018.0263-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0263-17/

Cité par Sources :