Keywords: Orlicz space; Riesz potential; fractional integral; metric measure space; lower Ahlfors regular
@article{10_21136_CMJ_2018_0258_17,
author = {Hashimoto, Daiki and Ohno, Takao and Shimomura, Tetsu},
title = {Boundedness of generalized fractional integral operators on {Orlicz} spaces near $L^1$ over metric measure spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {207--223},
year = {2019},
volume = {69},
number = {1},
doi = {10.21136/CMJ.2018.0258-17},
mrnumber = {3923585},
zbl = {07088780},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0258-17/}
}
TY - JOUR AU - Hashimoto, Daiki AU - Ohno, Takao AU - Shimomura, Tetsu TI - Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces JO - Czechoslovak Mathematical Journal PY - 2019 SP - 207 EP - 223 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0258-17/ DO - 10.21136/CMJ.2018.0258-17 LA - en ID - 10_21136_CMJ_2018_0258_17 ER -
%0 Journal Article %A Hashimoto, Daiki %A Ohno, Takao %A Shimomura, Tetsu %T Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces %J Czechoslovak Mathematical Journal %D 2019 %P 207-223 %V 69 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0258-17/ %R 10.21136/CMJ.2018.0258-17 %G en %F 10_21136_CMJ_2018_0258_17
Hashimoto, Daiki; Ohno, Takao; Shimomura, Tetsu. Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 207-223. doi: 10.21136/CMJ.2018.0258-17
[1] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics 17, European Mathematical Society, Zürich (2011). | DOI | MR | JFM
[2] Cianchi, A.: Strong and weak type inequalities for some classical operators in Orlicz spaces. J. Lond. Math. Soc., II. Ser. 60 (1999), 187-202. | DOI | MR | JFM
[3] DeJarnette, N.: Is an Orlicz-Poincaré inequality an open ended condition, and what does that mean?. J. Math. Anal. Appl. 423 (2015), 358-376. | DOI | MR | JFM
[4] Dyda, B.: Embedding theorems for Lipschitz and Lorentz spaces on lower Ahlfors regular sets. Stud. Math. 197 (2010), 247-256. | DOI | MR | JFM
[5] Eridani, Gunawan, H., Nakai, E.: On generalized fractional integral operators. Sci. Math. Jpn. 60 (2004), 539-550. | MR | JFM
[6] Futamura, T., Shimomura, T.: Boundary behavior of monotone Sobolev functions in Orlicz spaces on John domains in a metric space. J. Geom. Anal. 28 (2018), 1233-1244. | DOI | MR | JFM
[7] García-Cuerva, J., Gatto, A. E.: Boundedness properties of fractional integral operators associated to non-doubling measures. Stud. Math. 162 (2004), 245-261. | DOI | MR | JFM
[8] Gunawan, H.: A note on the generalized fractional integral operators. J. Indones. Math. Soc. 9 (2003), 39-43. | MR | JFM
[9] Haj{ł}asz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (2000), No. 688, 101 pages. | DOI | MR | JFM
[10] Hedberg, L. I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36 (1972), 505-510. | DOI | MR | JFM
[11] Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext, Springer, New York (2001). | DOI | MR | JFM
[12] Hyt{ö}nen, T.: A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat., Barc. 54 (2010), 485-504. | DOI | MR | JFM
[13] Lisini, S.: Absolutely continuous curves in extended Wasserstein-Orlicz spaces. ESAIM, Control Optim. Calc. Var. 22 (2016), 670-687. | DOI | MR | JFM
[14] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials. J. Math. Soc. Japan 62 (2010), 707-744. | DOI | MR | JFM
[15] Mizuta, Y., Shimomura, T.: Differentiability and Hölder continuity of Riesz potentials of Orlicz functions. Analysis, München 20 (2000), 201-223. | DOI | MR | JFM
[16] Mizuta, Y., Shimomura, T., Sobukawa, T.: Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces. Osaka J. Math. 46 (2009), 255-271. | MR | JFM
[17] Nakai, E.: On generalized fractional integrals. Taiwanese J. Math. 5 (2001), 587-602. | DOI | MR | JFM
[18] Nakai, E.: On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type. Sci. Math. Jpn. 54 (2001), 473-487. | MR | JFM
[19] Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. No. 15 (1997), 703-726. | DOI | MR | JFM
[20] Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. No. 9 (1998), 463-487. | DOI | MR | JFM
[21] Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. Czech. Math. J. 64 (2014), 209-228. | DOI | MR | JFM
[22] Ohno, T., Shimomura, T.: Trudinger's inequality and continuity for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces on metric measure spaces. Nonlinear Anal., Theory Methods Appl., Ser. A 106 (2014), 1-17. | DOI | MR | JFM
[23] Ohno, T., Shimomura, T.: Musielak-Orlicz-Sobolev spaces on metric measure spaces. Czech. Math. J. 65 (2015), 435-474. | DOI | MR | JFM
[24] O'Neil, R.: Fractional integration in Orlicz spaces. I. Trans. Am. Math. Soc. 115 (1965), 300-328. | DOI | MR | JFM
[25] Sawano, Y., Shimomura, T.: Sobolev embeddings for generalized Riesz potentials of functions in Morrey spaces $L^{(1,\varphi)}(G)$ over nondoubling measure spaces. J. Funct. Spaces Appl. 2013 (2013), Article ID 984259, 12 pages. | DOI | MR | JFM
[26] Sawano, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents. Collect. Math. 64 (2013), 313-350. | DOI | MR | JFM
[27] Sawano, Y., Shimomura, T.: Boundedness of the generalized fractional integral operators on generalized Morrey spaces over metric measure spaces. Z. Anal. Anwend. 36 (2017), 159-190. | DOI | MR | JFM
[28] Sawano, Y., Shimomura, T.: Generalized fractional integral operators over non-doubling metric measure spaces. Integral Transforms Spec. Funct. 28 (2017), 534-546. | DOI | MR | JFM
[29] Tolsa, X.: BMO, $H^1$, and Calderón-Zygmund operators for nondoubling measures. Math. Ann. 319 (2001), 89-149. | DOI | MR | JFM
Cité par Sources :