Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 207-223 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We are concerned with the boundedness of generalized fractional integral operators $I_{\rho ,\tau }$ from Orlicz spaces $L^{\Phi }(X)$ near $L^1(X)$ to Orlicz spaces $L^{\Psi }(X)$ over metric measure spaces equipped with lower Ahlfors $Q$-regular measures, where $\Phi $ is a function of the form $\Phi (r)=r\ell (r)$ and $\ell $ is of log-type. We give a generalization of paper by Mizuta et al. (2010), in the Euclidean setting. We deal with both generalized Riesz potentials and generalized logarithmic potentials.
We are concerned with the boundedness of generalized fractional integral operators $I_{\rho ,\tau }$ from Orlicz spaces $L^{\Phi }(X)$ near $L^1(X)$ to Orlicz spaces $L^{\Psi }(X)$ over metric measure spaces equipped with lower Ahlfors $Q$-regular measures, where $\Phi $ is a function of the form $\Phi (r)=r\ell (r)$ and $\ell $ is of log-type. We give a generalization of paper by Mizuta et al. (2010), in the Euclidean setting. We deal with both generalized Riesz potentials and generalized logarithmic potentials.
DOI : 10.21136/CMJ.2018.0258-17
Classification : 31B15, 46E30, 46E35
Keywords: Orlicz space; Riesz potential; fractional integral; metric measure space; lower Ahlfors regular
@article{10_21136_CMJ_2018_0258_17,
     author = {Hashimoto, Daiki and Ohno, Takao and Shimomura, Tetsu},
     title = {Boundedness of generalized fractional integral operators on {Orlicz} spaces near $L^1$ over metric measure spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {207--223},
     year = {2019},
     volume = {69},
     number = {1},
     doi = {10.21136/CMJ.2018.0258-17},
     mrnumber = {3923585},
     zbl = {07088780},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0258-17/}
}
TY  - JOUR
AU  - Hashimoto, Daiki
AU  - Ohno, Takao
AU  - Shimomura, Tetsu
TI  - Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 207
EP  - 223
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0258-17/
DO  - 10.21136/CMJ.2018.0258-17
LA  - en
ID  - 10_21136_CMJ_2018_0258_17
ER  - 
%0 Journal Article
%A Hashimoto, Daiki
%A Ohno, Takao
%A Shimomura, Tetsu
%T Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces
%J Czechoslovak Mathematical Journal
%D 2019
%P 207-223
%V 69
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0258-17/
%R 10.21136/CMJ.2018.0258-17
%G en
%F 10_21136_CMJ_2018_0258_17
Hashimoto, Daiki; Ohno, Takao; Shimomura, Tetsu. Boundedness of generalized fractional integral operators on Orlicz spaces near $L^1$ over metric measure spaces. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 207-223. doi: 10.21136/CMJ.2018.0258-17

[1] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics 17, European Mathematical Society, Zürich (2011). | DOI | MR | JFM

[2] Cianchi, A.: Strong and weak type inequalities for some classical operators in Orlicz spaces. J. Lond. Math. Soc., II. Ser. 60 (1999), 187-202. | DOI | MR | JFM

[3] DeJarnette, N.: Is an Orlicz-Poincaré inequality an open ended condition, and what does that mean?. J. Math. Anal. Appl. 423 (2015), 358-376. | DOI | MR | JFM

[4] Dyda, B.: Embedding theorems for Lipschitz and Lorentz spaces on lower Ahlfors regular sets. Stud. Math. 197 (2010), 247-256. | DOI | MR | JFM

[5] Eridani, Gunawan, H., Nakai, E.: On generalized fractional integral operators. Sci. Math. Jpn. 60 (2004), 539-550. | MR | JFM

[6] Futamura, T., Shimomura, T.: Boundary behavior of monotone Sobolev functions in Orlicz spaces on John domains in a metric space. J. Geom. Anal. 28 (2018), 1233-1244. | DOI | MR | JFM

[7] García-Cuerva, J., Gatto, A. E.: Boundedness properties of fractional integral operators associated to non-doubling measures. Stud. Math. 162 (2004), 245-261. | DOI | MR | JFM

[8] Gunawan, H.: A note on the generalized fractional integral operators. J. Indones. Math. Soc. 9 (2003), 39-43. | MR | JFM

[9] Haj{ł}asz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (2000), No. 688, 101 pages. | DOI | MR | JFM

[10] Hedberg, L. I.: On certain convolution inequalities. Proc. Am. Math. Soc. 36 (1972), 505-510. | DOI | MR | JFM

[11] Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext, Springer, New York (2001). | DOI | MR | JFM

[12] Hyt{ö}nen, T.: A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat., Barc. 54 (2010), 485-504. | DOI | MR | JFM

[13] Lisini, S.: Absolutely continuous curves in extended Wasserstein-Orlicz spaces. ESAIM, Control Optim. Calc. Var. 22 (2016), 670-687. | DOI | MR | JFM

[14] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials. J. Math. Soc. Japan 62 (2010), 707-744. | DOI | MR | JFM

[15] Mizuta, Y., Shimomura, T.: Differentiability and Hölder continuity of Riesz potentials of Orlicz functions. Analysis, München 20 (2000), 201-223. | DOI | MR | JFM

[16] Mizuta, Y., Shimomura, T., Sobukawa, T.: Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces. Osaka J. Math. 46 (2009), 255-271. | MR | JFM

[17] Nakai, E.: On generalized fractional integrals. Taiwanese J. Math. 5 (2001), 587-602. | DOI | MR | JFM

[18] Nakai, E.: On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type. Sci. Math. Jpn. 54 (2001), 473-487. | MR | JFM

[19] Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. No. 15 (1997), 703-726. | DOI | MR | JFM

[20] Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. No. 9 (1998), 463-487. | DOI | MR | JFM

[21] Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. Czech. Math. J. 64 (2014), 209-228. | DOI | MR | JFM

[22] Ohno, T., Shimomura, T.: Trudinger's inequality and continuity for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces on metric measure spaces. Nonlinear Anal., Theory Methods Appl., Ser. A 106 (2014), 1-17. | DOI | MR | JFM

[23] Ohno, T., Shimomura, T.: Musielak-Orlicz-Sobolev spaces on metric measure spaces. Czech. Math. J. 65 (2015), 435-474. | DOI | MR | JFM

[24] O'Neil, R.: Fractional integration in Orlicz spaces. I. Trans. Am. Math. Soc. 115 (1965), 300-328. | DOI | MR | JFM

[25] Sawano, Y., Shimomura, T.: Sobolev embeddings for generalized Riesz potentials of functions in Morrey spaces $L^{(1,\varphi)}(G)$ over nondoubling measure spaces. J. Funct. Spaces Appl. 2013 (2013), Article ID 984259, 12 pages. | DOI | MR | JFM

[26] Sawano, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents. Collect. Math. 64 (2013), 313-350. | DOI | MR | JFM

[27] Sawano, Y., Shimomura, T.: Boundedness of the generalized fractional integral operators on generalized Morrey spaces over metric measure spaces. Z. Anal. Anwend. 36 (2017), 159-190. | DOI | MR | JFM

[28] Sawano, Y., Shimomura, T.: Generalized fractional integral operators over non-doubling metric measure spaces. Integral Transforms Spec. Funct. 28 (2017), 534-546. | DOI | MR | JFM

[29] Tolsa, X.: BMO, $H^1$, and Calderón-Zygmund operators for nondoubling measures. Math. Ann. 319 (2001), 89-149. | DOI | MR | JFM

Cité par Sources :