Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 197-205.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An element in a ring is clean (or, unit-regular) if it is the sum (or, the product) of an idempotent and a unit, and is nil-clean if it is the sum of an idempotent and a nilpotent. Firstly, we show that Jacobson's lemma does not hold for nil-clean elements in a ring, answering a question posed by Koşan, Wang and Zhou (2016). Secondly, we present new counter-examples to Diesl's question whether a nil-clean element is clean in a ring. Lastly, we give new examples of unit-regular elements that are not clean in a ring. The rings under consideration in our examples are particular subrings of $\mathbb {M}_2(\mathbb {Z})$.
DOI : 10.21136/CMJ.2018.0256-17
Classification : 11D09, 16S50, 16U60
Keywords: clean element; nil-clean element; unit-regular element; Jacobson's lemma for nil-clean elements
@article{10_21136_CMJ_2018_0256_17,
     author = {Wu, Yansheng and Tang, Gaohua and Deng, Guixin and Zhou, Yiqiang},
     title = {Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {197--205},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.21136/CMJ.2018.0256-17},
     mrnumber = {3923584},
     zbl = {07088779},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0256-17/}
}
TY  - JOUR
AU  - Wu, Yansheng
AU  - Tang, Gaohua
AU  - Deng, Guixin
AU  - Zhou, Yiqiang
TI  - Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 197
EP  - 205
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0256-17/
DO  - 10.21136/CMJ.2018.0256-17
LA  - en
ID  - 10_21136_CMJ_2018_0256_17
ER  - 
%0 Journal Article
%A Wu, Yansheng
%A Tang, Gaohua
%A Deng, Guixin
%A Zhou, Yiqiang
%T Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$
%J Czechoslovak Mathematical Journal
%D 2019
%P 197-205
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0256-17/
%R 10.21136/CMJ.2018.0256-17
%G en
%F 10_21136_CMJ_2018_0256_17
Wu, Yansheng; Tang, Gaohua; Deng, Guixin; Zhou, Yiqiang. Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 197-205. doi : 10.21136/CMJ.2018.0256-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0256-17/

Cité par Sources :