Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 197-205
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
An element in a ring is clean (or, unit-regular) if it is the sum (or, the product) of an idempotent and a unit, and is nil-clean if it is the sum of an idempotent and a nilpotent. Firstly, we show that Jacobson's lemma does not hold for nil-clean elements in a ring, answering a question posed by Koşan, Wang and Zhou (2016). Secondly, we present new counter-examples to Diesl's question whether a nil-clean element is clean in a ring. Lastly, we give new examples of unit-regular elements that are not clean in a ring. The rings under consideration in our examples are particular subrings of $\mathbb {M}_2(\mathbb {Z})$.
An element in a ring is clean (or, unit-regular) if it is the sum (or, the product) of an idempotent and a unit, and is nil-clean if it is the sum of an idempotent and a nilpotent. Firstly, we show that Jacobson's lemma does not hold for nil-clean elements in a ring, answering a question posed by Koşan, Wang and Zhou (2016). Secondly, we present new counter-examples to Diesl's question whether a nil-clean element is clean in a ring. Lastly, we give new examples of unit-regular elements that are not clean in a ring. The rings under consideration in our examples are particular subrings of $\mathbb {M}_2(\mathbb {Z})$.
DOI :
10.21136/CMJ.2018.0256-17
Classification :
11D09, 16S50, 16U60
Keywords: clean element; nil-clean element; unit-regular element; Jacobson's lemma for nil-clean elements
Keywords: clean element; nil-clean element; unit-regular element; Jacobson's lemma for nil-clean elements
@article{10_21136_CMJ_2018_0256_17,
author = {Wu, Yansheng and Tang, Gaohua and Deng, Guixin and Zhou, Yiqiang},
title = {Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$},
journal = {Czechoslovak Mathematical Journal},
pages = {197--205},
year = {2019},
volume = {69},
number = {1},
doi = {10.21136/CMJ.2018.0256-17},
mrnumber = {3923584},
zbl = {07088779},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0256-17/}
}
TY - JOUR
AU - Wu, Yansheng
AU - Tang, Gaohua
AU - Deng, Guixin
AU - Zhou, Yiqiang
TI - Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$
JO - Czechoslovak Mathematical Journal
PY - 2019
SP - 197
EP - 205
VL - 69
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0256-17/
DO - 10.21136/CMJ.2018.0256-17
LA - en
ID - 10_21136_CMJ_2018_0256_17
ER -
%0 Journal Article
%A Wu, Yansheng
%A Tang, Gaohua
%A Deng, Guixin
%A Zhou, Yiqiang
%T Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$
%J Czechoslovak Mathematical Journal
%D 2019
%P 197-205
%V 69
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0256-17/
%R 10.21136/CMJ.2018.0256-17
%G en
%F 10_21136_CMJ_2018_0256_17
Wu, Yansheng; Tang, Gaohua; Deng, Guixin; Zhou, Yiqiang. Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 197-205. doi: 10.21136/CMJ.2018.0256-17
Cité par Sources :