Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 197-205 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An element in a ring is clean (or, unit-regular) if it is the sum (or, the product) of an idempotent and a unit, and is nil-clean if it is the sum of an idempotent and a nilpotent. Firstly, we show that Jacobson's lemma does not hold for nil-clean elements in a ring, answering a question posed by Koşan, Wang and Zhou (2016). Secondly, we present new counter-examples to Diesl's question whether a nil-clean element is clean in a ring. Lastly, we give new examples of unit-regular elements that are not clean in a ring. The rings under consideration in our examples are particular subrings of $\mathbb {M}_2(\mathbb {Z})$.
An element in a ring is clean (or, unit-regular) if it is the sum (or, the product) of an idempotent and a unit, and is nil-clean if it is the sum of an idempotent and a nilpotent. Firstly, we show that Jacobson's lemma does not hold for nil-clean elements in a ring, answering a question posed by Koşan, Wang and Zhou (2016). Secondly, we present new counter-examples to Diesl's question whether a nil-clean element is clean in a ring. Lastly, we give new examples of unit-regular elements that are not clean in a ring. The rings under consideration in our examples are particular subrings of $\mathbb {M}_2(\mathbb {Z})$.
DOI : 10.21136/CMJ.2018.0256-17
Classification : 11D09, 16S50, 16U60
Keywords: clean element; nil-clean element; unit-regular element; Jacobson's lemma for nil-clean elements
@article{10_21136_CMJ_2018_0256_17,
     author = {Wu, Yansheng and Tang, Gaohua and Deng, Guixin and Zhou, Yiqiang},
     title = {Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {197--205},
     year = {2019},
     volume = {69},
     number = {1},
     doi = {10.21136/CMJ.2018.0256-17},
     mrnumber = {3923584},
     zbl = {07088779},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0256-17/}
}
TY  - JOUR
AU  - Wu, Yansheng
AU  - Tang, Gaohua
AU  - Deng, Guixin
AU  - Zhou, Yiqiang
TI  - Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 197
EP  - 205
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0256-17/
DO  - 10.21136/CMJ.2018.0256-17
LA  - en
ID  - 10_21136_CMJ_2018_0256_17
ER  - 
%0 Journal Article
%A Wu, Yansheng
%A Tang, Gaohua
%A Deng, Guixin
%A Zhou, Yiqiang
%T Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$
%J Czechoslovak Mathematical Journal
%D 2019
%P 197-205
%V 69
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0256-17/
%R 10.21136/CMJ.2018.0256-17
%G en
%F 10_21136_CMJ_2018_0256_17
Wu, Yansheng; Tang, Gaohua; Deng, Guixin; Zhou, Yiqiang. Nil-clean and unit-regular elements in certain subrings of ${\mathbb M}_2(\mathbb Z)$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 197-205. doi: 10.21136/CMJ.2018.0256-17

[1] Andrica, D., Călugăreanu, G.: A nil-clean $2 \times 2$ matrix over the integers which is not clean. J. Algebra Appl. 13 (2014), Article ID 1450009, 9 pages. | DOI | MR | JFM

[2] Camillo, V. P., Khurana, D.: A characterization of unit regular rings. Commun. Algebra 29 (2001), 2293-2295. | DOI | MR | JFM

[3] Chen, J., Yang, X., Zhou, Y.: On strongly clean matrix and triangular matrix rings. Commun. Algebra 34 (2006), 3659-3674. | DOI | MR | JFM

[4] Cvetkovic-Ilic, D., Harte, R.: On Jacobson's lemma and Drazin invertibility. Appl. Math. Lett. 23 (2010), 417-420. | DOI | MR | JFM

[5] Diesl, A. J.: Nil clean rings. J. Algebra 383 (2013), 197-211. | DOI | MR | JFM

[6] Khurana, D., Lam, T. Y.: Clean matrices and unit-regular matrices. J. Algebra 280 (2004), 683-698. | DOI | MR | JFM

[7] Koşan, T., Wang, Z., Zhou, Y.: Nil-clean and strongly nil-clean rings. J. Pure Appl. Algebra 220 (2016), 633-646. | DOI | MR | JFM

[8] Lam, T. Y., Nielsen, P. P.: Jacobson's lemma for Drazin inverses. Ring Theory and Its Applications D. V. Huynh et al. Contemporary Mathematics 609, American Mathematical Society, Providence (2014), 185-195. | DOI | MR | JFM

[9] Tang, G., Zhou, Y.: A class of formal matrix rings. Linear Algebra Appl. 438 (2013), 4672-4688. | DOI | MR | JFM

[10] Zhuang, G., Chen, J., Cui, J.: Jacobson's lemma for the generalized Drazin inverse. Linear Algebra Appl. 436 (2012), 742-746. | DOI | MR | JFM

Cité par Sources :