Finite distortion functions and Douglas-Dirichlet functionals
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 183-195.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we estimate the Douglas-Dirichlet functionals of harmonic mappings, namely Euclidean harmonic mapping and flat harmonic mapping, by using the extremal dilatation of finite distortion functions with given boundary value on the unit circle. In addition, $\bar {\partial }$-Dirichlet functionals of harmonic mappings are also investigated.
DOI : 10.21136/CMJ.2018.0238-17
Classification : 30C62, 30C70, 31A05
Keywords: Douglas-Dirichlet functional; $\rho $-harmonic mapping; finite distortion functions; extremal quasiconformal mapping; Dirichlet's principle
@article{10_21136_CMJ_2018_0238_17,
     author = {Shi, Qingtian},
     title = {Finite distortion functions and {Douglas-Dirichlet} functionals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {183--195},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.21136/CMJ.2018.0238-17},
     mrnumber = {3923583},
     zbl = {07088778},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0238-17/}
}
TY  - JOUR
AU  - Shi, Qingtian
TI  - Finite distortion functions and Douglas-Dirichlet functionals
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 183
EP  - 195
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0238-17/
DO  - 10.21136/CMJ.2018.0238-17
LA  - en
ID  - 10_21136_CMJ_2018_0238_17
ER  - 
%0 Journal Article
%A Shi, Qingtian
%T Finite distortion functions and Douglas-Dirichlet functionals
%J Czechoslovak Mathematical Journal
%D 2019
%P 183-195
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0238-17/
%R 10.21136/CMJ.2018.0238-17
%G en
%F 10_21136_CMJ_2018_0238_17
Shi, Qingtian. Finite distortion functions and Douglas-Dirichlet functionals. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 183-195. doi : 10.21136/CMJ.2018.0238-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0238-17/

Cité par Sources :