Keywords: Douglas-Dirichlet functional; $\rho $-harmonic mapping; finite distortion functions; extremal quasiconformal mapping; Dirichlet's principle
@article{10_21136_CMJ_2018_0238_17,
author = {Shi, Qingtian},
title = {Finite distortion functions and {Douglas-Dirichlet} functionals},
journal = {Czechoslovak Mathematical Journal},
pages = {183--195},
year = {2019},
volume = {69},
number = {1},
doi = {10.21136/CMJ.2018.0238-17},
mrnumber = {3923583},
zbl = {07088778},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0238-17/}
}
TY - JOUR AU - Shi, Qingtian TI - Finite distortion functions and Douglas-Dirichlet functionals JO - Czechoslovak Mathematical Journal PY - 2019 SP - 183 EP - 195 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0238-17/ DO - 10.21136/CMJ.2018.0238-17 LA - en ID - 10_21136_CMJ_2018_0238_17 ER -
Shi, Qingtian. Finite distortion functions and Douglas-Dirichlet functionals. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 183-195. doi: 10.21136/CMJ.2018.0238-17
[1] Astala, K., Iwaniec, T., Martin, G. J.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton Mathematical Series 48, Princeton University Press, Princeton (2009). | DOI | MR | JFM
[2] Astala, K., Iwaniec, T., Martin, G. J., Onninen, J.: Extremal mappings of finite distortion. Proc. Lond. Math. Soc., III. Ser. 91 (2005), 655-702. | DOI | MR | JFM
[3] Chen, X., Qian, T.: Estimation of hyperbolically partial derivatives of $\rho$-harmonic quasiconformal mappings and its applications. Complex Var. Elliptic Equ. 60 (2015), 875-892. | DOI | MR | JFM
[4] Duren, P.: Harmonic Mappings in the Plane. Cambridge Tracts in Mathematics 156, Cambridge University Press, Cambridge (2004). | DOI | MR | JFM
[5] Feng, X.: Mappings of finite distortion and harmonic functions. Pure Appl. Math. 32 (2016), 119-126 Chinese. | DOI | JFM
[6] Feng, X., Tang, S.: A note on the $\rho$-Nitsche conjecture. Arch. Math. 107 (2016), 81-88. | DOI | MR | JFM
[7] Hencl, S., Koskela, P., Onninen, J.: A note on extremal mappings of finite distortion. Math. Res. Lett. 12 (2005), 231-237. | DOI | MR | JFM
[8] Kalaj, D., Mateljević, M.: Inner estimate and quasiconformal harmonic maps between smooth domains. J. Anal. Math. 100 (2006), 117-132. | DOI | MR | JFM
[9] Li, Z.: On the boundary value problem for harmonic maps of the Poincaré disc. Chin. Sci. Bull. 42 (1997), 2025-2045. | DOI | MR | JFM
[10] Mateljević, M.: Dirichlet's principle, distortion and related problems for harmonic mappings. Publ. Inst. Math., Nouv. Sér. 75(89) (2004), 147-171. | DOI | MR | JFM
[11] Mateljević, M.: Dirichlet's principle, uniqueness of harmonic maps and extremal QC mappings. Zbornik Radova (Beograd) 10(18) (2004), 41-91. | MR | JFM
[12] Qi, Y., Shi, Q.: Quasi-isometricity and equivalent moduli of continuity of planar $1/|\omega|^2$-harmonic mappings. Filomat 31 (2017), 335-345. | DOI | MR
[13] Reich, E.: On the variational principle of Gerstenhaber and Rauch. Ann. Acad. Sci. Fenn., Ser. A I, Math. 10 (1985), 469-475. | DOI | MR | JFM
[14] Reich, E.: Harmonic mappings and quasiconformal mappings. J. Anal. Math. 46 (1986), 239-245. | DOI | MR | JFM
[15] Schoen, R., Yau, T. S.: On univalent harmonic maps between surfaces. Invent. Math. 44 (1978), 265-278. | DOI | MR | JFM
[16] Shen, Y.: Quasiconformal mappings and harmonic functions. Adv. Math., Beijing 28 (1999), 347-357. | MR | JFM
[17] Shen, Y.: Extremal problems for quasiconformal mappings. J. Math. Anal. Appl. 247 (2000), 27-44. | DOI | MR | JFM
[18] Wei, H.: On the uniqueness problem of harmonic quasiconformal mappings. Proc. Am. Math. Soc. 124 (1996), 2337-2341. | DOI | MR | JFM
[19] Yao, G.: $\bar{\partial}$-energy integral and harmonic mappings. Proc. Am. Math. Soc. 131 (2003), 2271-2277. | DOI | MR | JFM
[20] Yao, G.: $\bar{\partial}$-energy integral and uniqueness of harmonic maps. Math. Nachr. 278 (2005), 1086-1096. | DOI | MR | JFM
Cité par Sources :