Finite $p$-groups with exactly two nonlinear non-faithful irreducible characters
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 173-181 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a finite group with exactly two nonlinear non-faithful irreducible characters. We discuss the properties of $G$ and classify finite $p$-groups with exactly two nonlinear non-faithful irreducible characters.
Let $G$ be a finite group with exactly two nonlinear non-faithful irreducible characters. We discuss the properties of $G$ and classify finite $p$-groups with exactly two nonlinear non-faithful irreducible characters.
DOI : 10.21136/CMJ.2018.0230-17
Classification : 20C15
Keywords: $p$-group; nonlinear irreducible character; non-faithful character
@article{10_21136_CMJ_2018_0230_17,
     author = {Li, Yali and Chen, Xiaoyou and Li, Huimin},
     title = {Finite $p$-groups with exactly two nonlinear non-faithful irreducible characters},
     journal = {Czechoslovak Mathematical Journal},
     pages = {173--181},
     year = {2019},
     volume = {69},
     number = {1},
     doi = {10.21136/CMJ.2018.0230-17},
     mrnumber = {3923582},
     zbl = {07088777},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0230-17/}
}
TY  - JOUR
AU  - Li, Yali
AU  - Chen, Xiaoyou
AU  - Li, Huimin
TI  - Finite $p$-groups with exactly two nonlinear non-faithful irreducible characters
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 173
EP  - 181
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0230-17/
DO  - 10.21136/CMJ.2018.0230-17
LA  - en
ID  - 10_21136_CMJ_2018_0230_17
ER  - 
%0 Journal Article
%A Li, Yali
%A Chen, Xiaoyou
%A Li, Huimin
%T Finite $p$-groups with exactly two nonlinear non-faithful irreducible characters
%J Czechoslovak Mathematical Journal
%D 2019
%P 173-181
%V 69
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0230-17/
%R 10.21136/CMJ.2018.0230-17
%G en
%F 10_21136_CMJ_2018_0230_17
Li, Yali; Chen, Xiaoyou; Li, Huimin. Finite $p$-groups with exactly two nonlinear non-faithful irreducible characters. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 173-181. doi: 10.21136/CMJ.2018.0230-17

[1] Berkovich, Ya. G., Zhmud', E. M.: Characters of Finite Groups. Part 2. Translations of Mathematical Monographs 181, American Mathematical Society, Providence (1998). | MR | JFM

[2] Fernández-Alcober, G. A., Moretó, A.: Groups with two extreme character degrees and their normal subgroups. Trans. Am. Math. Soc. 353 (2001), 2171-2192. | DOI | MR | JFM

[3] The GAP Group. GAP---Groups, Algorithms, and Programming, Version 4.8.3 (2016), http://www.gap-system.org

[4] Iranmanesh, A., Saeidi, A.: Finite groups with a unique nonlinear nonfaithful irreducible character. Arch. Math., Brno 47 (2011), 91-98. | MR | JFM

[5] Isaacs, I. M.: Character Theory of Finite Groups. Pure and Applied Mathematics 69, Academic Press, New York (1976). | DOI | MR | JFM

[6] Saeidi, A.: Classification of solvable groups possessing a unique nonlinear non-faithful irreducible character. Cent. Eur. J. Math. 12 (2014), 79-83. | DOI | MR | JFM

[7] Seitz, G. M.: Finite groups having only one irreducible representation of degree greater than one. Proc. Am. Math. Soc. 19 (1968), 459-461. | DOI | MR | JFM

[8] Wang, H., Chen, X., Zeng, J.: Zeros of Brauer characters. Acta Math. Sci., Ser. B, Engl. Ed. 32 (2012), 1435-1440. | DOI | MR | JFM

[9] Zhang, G. X.: Finite groups with exactly two nonlinear irreducible characters. Chin. Ann. Math., Ser. A 17 (1996), 227-232 Chinese. | MR | JFM

Cité par Sources :