Torsion groups of a family of elliptic curves over number fields
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 161-171.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We compute the torsion group explicitly over quadratic fields and number fields of degree coprime to 6 for a family of elliptic curves of the form $E\colon y^2 = x^3 +c$, where $c$ is an integer.
DOI : 10.21136/CMJ.2018.0214-17
Classification : 11R04, 14H52
Keywords: torsion group; elliptic curve; number field
@article{10_21136_CMJ_2018_0214_17,
     author = {Dey, Pallab Kanti},
     title = {Torsion groups of a family of elliptic curves over number fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {161--171},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.21136/CMJ.2018.0214-17},
     mrnumber = {3923581},
     zbl = {07088776},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0214-17/}
}
TY  - JOUR
AU  - Dey, Pallab Kanti
TI  - Torsion groups of a family of elliptic curves over number fields
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 161
EP  - 171
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0214-17/
DO  - 10.21136/CMJ.2018.0214-17
LA  - en
ID  - 10_21136_CMJ_2018_0214_17
ER  - 
%0 Journal Article
%A Dey, Pallab Kanti
%T Torsion groups of a family of elliptic curves over number fields
%J Czechoslovak Mathematical Journal
%D 2019
%P 161-171
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0214-17/
%R 10.21136/CMJ.2018.0214-17
%G en
%F 10_21136_CMJ_2018_0214_17
Dey, Pallab Kanti. Torsion groups of a family of elliptic curves over number fields. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 161-171. doi : 10.21136/CMJ.2018.0214-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0214-17/

Cité par Sources :