Keywords: torsion group; elliptic curve; number field
@article{10_21136_CMJ_2018_0214_17,
author = {Dey, Pallab Kanti},
title = {Torsion groups of a family of elliptic curves over number fields},
journal = {Czechoslovak Mathematical Journal},
pages = {161--171},
year = {2019},
volume = {69},
number = {1},
doi = {10.21136/CMJ.2018.0214-17},
mrnumber = {3923581},
zbl = {07088776},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0214-17/}
}
TY - JOUR AU - Dey, Pallab Kanti TI - Torsion groups of a family of elliptic curves over number fields JO - Czechoslovak Mathematical Journal PY - 2019 SP - 161 EP - 171 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0214-17/ DO - 10.21136/CMJ.2018.0214-17 LA - en ID - 10_21136_CMJ_2018_0214_17 ER -
%0 Journal Article %A Dey, Pallab Kanti %T Torsion groups of a family of elliptic curves over number fields %J Czechoslovak Mathematical Journal %D 2019 %P 161-171 %V 69 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0214-17/ %R 10.21136/CMJ.2018.0214-17 %G en %F 10_21136_CMJ_2018_0214_17
Dey, Pallab Kanti. Torsion groups of a family of elliptic curves over number fields. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 161-171. doi: 10.21136/CMJ.2018.0214-17
[1] Ayoub, R.: An Introduction to the Analytic Theory of Numbers. Mathematical Surveys 10, American Mathematical Society, Providence (1963). | DOI | MR | JFM
[2] Bourdon, A., Clark, P. L., Stankewicz, J.: Torsion points on CM elliptic curves over real number fields. Trans. Am. Math. Soc. 369 (1996), 8457-8496. | DOI | MR | JFM
[3] Dey, P. K.: Elliptic curves with rank $0$ over number fields. Funct. Approximatio, Comment. Math. 56 (2017), 25-37. | DOI | MR | JFM
[4] González-Jiménez, E.: Complete classification of the torsion structures of rational elliptic curves over quintic number fields. J. Algebra 478 (2017), 484-505. | DOI | MR | JFM
[5] Jeon, D., Kim, C. H., Park, E.: On the torsion of elliptic curves over quartic number fields. J. Lond. Math. Soc., II. Ser. 74 (2006), 1-12. | DOI | MR | JFM
[6] Kamienny, S.: Torsion points on elliptic curves and $q$-coefficients of modular forms. Invent. Math. 109 (1992), 221-229. | DOI | MR | JFM
[7] Kenku, M. A., Momose, F.: Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109 (1988), 125-149. | DOI | MR | JFM
[8] Knapp, A. W.: Elliptic Curves. Mathematical Notes (Princeton) 40, Princeton University Press, Princeton (1992). | MR | JFM
[9] Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math., Inst. Hautes Étud. Sci. 47 (1977), 33-186. | DOI | MR | JFM
[10] Najman, F.: Complete classification of torsion of elliptic curves over quadratic cyclotomic fields. J. Number Theory 130 (2010), 1964-1968. | DOI | MR | JFM
[11] Najman, F.: Torsion of elliptic curves over quadratic cyclotomic fields. Math. J. Okayama Univ. 53 (2011), 75-82. | MR | JFM
[12] Najman, F.: Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$. Math. Res. Lett. 23 (2016), 245-272. | DOI | MR | JFM
[13] Olson, L. D.: Points of finite order on elliptic curves with complex multiplication. Manuscr. Math. 14 (1974), 195-205. | DOI | MR | JFM
[14] Washington, L. C.: Elliptic Curves. Number Theory and Cryptography. Chapman and Hall/CRC, Boca Raton (2008). | DOI | MR | JFM
Cité par Sources :