Torsion groups of a family of elliptic curves over number fields
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 161-171 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We compute the torsion group explicitly over quadratic fields and number fields of degree coprime to 6 for a family of elliptic curves of the form $E\colon y^2 = x^3 +c$, where $c$ is an integer.
We compute the torsion group explicitly over quadratic fields and number fields of degree coprime to 6 for a family of elliptic curves of the form $E\colon y^2 = x^3 +c$, where $c$ is an integer.
DOI : 10.21136/CMJ.2018.0214-17
Classification : 11R04, 14H52
Keywords: torsion group; elliptic curve; number field
@article{10_21136_CMJ_2018_0214_17,
     author = {Dey, Pallab Kanti},
     title = {Torsion groups of a family of elliptic curves over number fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {161--171},
     year = {2019},
     volume = {69},
     number = {1},
     doi = {10.21136/CMJ.2018.0214-17},
     mrnumber = {3923581},
     zbl = {07088776},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0214-17/}
}
TY  - JOUR
AU  - Dey, Pallab Kanti
TI  - Torsion groups of a family of elliptic curves over number fields
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 161
EP  - 171
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0214-17/
DO  - 10.21136/CMJ.2018.0214-17
LA  - en
ID  - 10_21136_CMJ_2018_0214_17
ER  - 
%0 Journal Article
%A Dey, Pallab Kanti
%T Torsion groups of a family of elliptic curves over number fields
%J Czechoslovak Mathematical Journal
%D 2019
%P 161-171
%V 69
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0214-17/
%R 10.21136/CMJ.2018.0214-17
%G en
%F 10_21136_CMJ_2018_0214_17
Dey, Pallab Kanti. Torsion groups of a family of elliptic curves over number fields. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 161-171. doi: 10.21136/CMJ.2018.0214-17

[1] Ayoub, R.: An Introduction to the Analytic Theory of Numbers. Mathematical Surveys 10, American Mathematical Society, Providence (1963). | DOI | MR | JFM

[2] Bourdon, A., Clark, P. L., Stankewicz, J.: Torsion points on CM elliptic curves over real number fields. Trans. Am. Math. Soc. 369 (1996), 8457-8496. | DOI | MR | JFM

[3] Dey, P. K.: Elliptic curves with rank $0$ over number fields. Funct. Approximatio, Comment. Math. 56 (2017), 25-37. | DOI | MR | JFM

[4] González-Jiménez, E.: Complete classification of the torsion structures of rational elliptic curves over quintic number fields. J. Algebra 478 (2017), 484-505. | DOI | MR | JFM

[5] Jeon, D., Kim, C. H., Park, E.: On the torsion of elliptic curves over quartic number fields. J. Lond. Math. Soc., II. Ser. 74 (2006), 1-12. | DOI | MR | JFM

[6] Kamienny, S.: Torsion points on elliptic curves and $q$-coefficients of modular forms. Invent. Math. 109 (1992), 221-229. | DOI | MR | JFM

[7] Kenku, M. A., Momose, F.: Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109 (1988), 125-149. | DOI | MR | JFM

[8] Knapp, A. W.: Elliptic Curves. Mathematical Notes (Princeton) 40, Princeton University Press, Princeton (1992). | MR | JFM

[9] Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math., Inst. Hautes Étud. Sci. 47 (1977), 33-186. | DOI | MR | JFM

[10] Najman, F.: Complete classification of torsion of elliptic curves over quadratic cyclotomic fields. J. Number Theory 130 (2010), 1964-1968. | DOI | MR | JFM

[11] Najman, F.: Torsion of elliptic curves over quadratic cyclotomic fields. Math. J. Okayama Univ. 53 (2011), 75-82. | MR | JFM

[12] Najman, F.: Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$. Math. Res. Lett. 23 (2016), 245-272. | DOI | MR | JFM

[13] Olson, L. D.: Points of finite order on elliptic curves with complex multiplication. Manuscr. Math. 14 (1974), 195-205. | DOI | MR | JFM

[14] Washington, L. C.: Elliptic Curves. Number Theory and Cryptography. Chapman and Hall/CRC, Boca Raton (2008). | DOI | MR | JFM

Cité par Sources :