Torsion groups of a family of elliptic curves over number fields
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 161-171
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We compute the torsion group explicitly over quadratic fields and number fields of degree coprime to 6 for a family of elliptic curves of the form $E\colon y^2 = x^3 +c$, where $c$ is an integer.
DOI :
10.21136/CMJ.2018.0214-17
Classification :
11R04, 14H52
Keywords: torsion group; elliptic curve; number field
Keywords: torsion group; elliptic curve; number field
@article{10_21136_CMJ_2018_0214_17,
author = {Dey, Pallab Kanti},
title = {Torsion groups of a family of elliptic curves over number fields},
journal = {Czechoslovak Mathematical Journal},
pages = {161--171},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2019},
doi = {10.21136/CMJ.2018.0214-17},
mrnumber = {3923581},
zbl = {07088776},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0214-17/}
}
TY - JOUR AU - Dey, Pallab Kanti TI - Torsion groups of a family of elliptic curves over number fields JO - Czechoslovak Mathematical Journal PY - 2019 SP - 161 EP - 171 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0214-17/ DO - 10.21136/CMJ.2018.0214-17 LA - en ID - 10_21136_CMJ_2018_0214_17 ER -
%0 Journal Article %A Dey, Pallab Kanti %T Torsion groups of a family of elliptic curves over number fields %J Czechoslovak Mathematical Journal %D 2019 %P 161-171 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0214-17/ %R 10.21136/CMJ.2018.0214-17 %G en %F 10_21136_CMJ_2018_0214_17
Dey, Pallab Kanti. Torsion groups of a family of elliptic curves over number fields. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 161-171. doi: 10.21136/CMJ.2018.0214-17
Cité par Sources :