Littlewood-Paley characterization of Hölder-Zygmund spaces on stratified Lie groups
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 131-159 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a characterization of the Hölder-Zygmund spaces $\mathcal {C}^{\sigma }(G)$ ($0 \sigma \infty $) on a stratified Lie group $G$ in terms of Littlewood-Paley type decompositions, in analogy to the well-known characterization of the Euclidean case. Such decompositions are defined via the spectral measure of a sub-Laplacian on $G$, in place of the Fourier transform in the classical setting. Our approach mainly relies on almost orthogonality estimates and can be used to study other function spaces such as Besov and Triebel-Lizorkin spaces on stratified Lie groups.
We give a characterization of the Hölder-Zygmund spaces $\mathcal {C}^{\sigma }(G)$ ($0 \sigma \infty $) on a stratified Lie group $G$ in terms of Littlewood-Paley type decompositions, in analogy to the well-known characterization of the Euclidean case. Such decompositions are defined via the spectral measure of a sub-Laplacian on $G$, in place of the Fourier transform in the classical setting. Our approach mainly relies on almost orthogonality estimates and can be used to study other function spaces such as Besov and Triebel-Lizorkin spaces on stratified Lie groups.
DOI : 10.21136/CMJ.2018.0197-17
Classification : 42B25, 42B35, 43A80
Keywords: stratified Lie group; Hölder-Zygmund space; Littlewood-Paley decomposition
@article{10_21136_CMJ_2018_0197_17,
     author = {Hu, Guorong},
     title = {Littlewood-Paley characterization of {H\"older-Zygmund} spaces on stratified {Lie} groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {131--159},
     year = {2019},
     volume = {69},
     number = {1},
     doi = {10.21136/CMJ.2018.0197-17},
     mrnumber = {3923580},
     zbl = {07088775},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0197-17/}
}
TY  - JOUR
AU  - Hu, Guorong
TI  - Littlewood-Paley characterization of Hölder-Zygmund spaces on stratified Lie groups
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 131
EP  - 159
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0197-17/
DO  - 10.21136/CMJ.2018.0197-17
LA  - en
ID  - 10_21136_CMJ_2018_0197_17
ER  - 
%0 Journal Article
%A Hu, Guorong
%T Littlewood-Paley characterization of Hölder-Zygmund spaces on stratified Lie groups
%J Czechoslovak Mathematical Journal
%D 2019
%P 131-159
%V 69
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0197-17/
%R 10.21136/CMJ.2018.0197-17
%G en
%F 10_21136_CMJ_2018_0197_17
Hu, Guorong. Littlewood-Paley characterization of Hölder-Zygmund spaces on stratified Lie groups. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 131-159. doi: 10.21136/CMJ.2018.0197-17

[1] Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer Monographs in Mathematics, Springer, Berlin (2007). | DOI | MR | JFM

[2] Christ, M.: $L^{p}$ bounds for spectral multipliers on nilpotent groups. Trans. Am. Math. Soc. 328 (1991), 73-81. | DOI | MR | JFM

[3] Folland, G. B.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13 (1975), 161-207. | DOI | MR | JFM

[4] Folland, G. B.: Lipschitz classes and Poisson integrals on stratified groups. Stud. Math. 66 (1979), 37-55. | DOI | MR | JFM

[5] Folland, G. B., Stein, E. M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes 28, Princeton University Press, Princeton (1982). | MR | JFM

[6] Führ, H., Mayeli, A.: Homogeneous Besov spaces on stratified Lie groups and their wavelet characterization. J. Funct. Spaces Appl. 2012 (2012), Article ID. 523586, 41 pages. | DOI | MR | JFM

[7] Furioli, G., Melzi, C., Veneruso, A.: Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth. Math. Nachr. 279 (2006), 1028-1040. | DOI | MR | JFM

[8] Giulini, S.: Approximation and Besov spaces on stratified groups. Proc. Am. Math. Soc. 96 (1986), 569-578. | DOI | MR | JFM

[9] Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics 250, Springer, New York (2009). | DOI | MR | JFM

[10] Hu, G.: Maximal Hardy spaces associated to nonnegative self-adjoint operators. Bull. Aust. Math. Soc. 91 (2015), 286-302. | DOI | MR | JFM

[11] Hulanicki, A.: A functional calculus for Rockland operators on nilpotent Lie groups. Stud. Math. 78 (1984), 253-266. | DOI | MR | JFM

[12] Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Am. Math. Soc. 367 (2015), 121-189. | DOI | MR | JFM

[13] Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, McGraw-Hill, New York (1991). | MR | JFM

[14] Saka, K.: Besov spaces and Sobolev spaces on a nilpotent Lie group. Tohoku Math. J., II. Ser. 31 (1979), 383-437. | DOI | MR | JFM

[15] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78, Birkhäuser, Basel (1983). | DOI | MR | JFM

[16] Varopoulos, N., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups. Cambridge Tracts in Mathematics 100, Cambridge University Press, Cambridge (1992). | DOI | MR | JFM

Cité par Sources :