On Kneser solutions of the $n$-th order nonlinear differential inclusions
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 99-116.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper deals with the existence of a Kneser solution of the $n$-th order nonlinear differential inclusion \begin {eqnarray} {x}^{(n)}(t)\in -A_{1}(t,x(t),\ldots ,x^{(n-1)}(t)){x}^{(n-1)}(t)-\ldots -A_{n}(t,x(t),\ldots ,^{(n-1)}(t))x(t)\nonumber \\ \text {for a.a.} \ t\in [a,\infty ),\nonumber \end {eqnarray} where $a\in (0,\infty )$, and $A_i\colon [a,\infty ) \times \mathbb {R}^{n}\to \mathbb {R}$, $i=1,\ldots ,n,$ are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.
DOI : 10.21136/CMJ.2018.0191-17
Classification : 34A60, 34B15, 34B40
Keywords: asymptotic $n$-th order vector problems; $R_{\delta }$-set; inverse limit technique; Kneser problem
@article{10_21136_CMJ_2018_0191_17,
     author = {Pavla\v{c}kov\'a, Martina},
     title = {On {Kneser} solutions of the $n$-th order nonlinear differential inclusions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {99--116},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.21136/CMJ.2018.0191-17},
     mrnumber = {3923578},
     zbl = {07088773},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0191-17/}
}
TY  - JOUR
AU  - Pavlačková, Martina
TI  - On Kneser solutions of the $n$-th order nonlinear differential inclusions
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 99
EP  - 116
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0191-17/
DO  - 10.21136/CMJ.2018.0191-17
LA  - en
ID  - 10_21136_CMJ_2018_0191_17
ER  - 
%0 Journal Article
%A Pavlačková, Martina
%T On Kneser solutions of the $n$-th order nonlinear differential inclusions
%J Czechoslovak Mathematical Journal
%D 2019
%P 99-116
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0191-17/
%R 10.21136/CMJ.2018.0191-17
%G en
%F 10_21136_CMJ_2018_0191_17
Pavlačková, Martina. On Kneser solutions of the $n$-th order nonlinear differential inclusions. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 99-116. doi : 10.21136/CMJ.2018.0191-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0191-17/

Cité par Sources :