On Kneser solutions of the $n$-th order nonlinear differential inclusions
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 99-116 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper deals with the existence of a Kneser solution of the $n$-th order nonlinear differential inclusion \begin {eqnarray} {x}^{(n)}(t)\in -A_{1}(t,x(t),\ldots ,x^{(n-1)}(t)){x}^{(n-1)}(t)-\ldots -A_{n}(t,x(t),\ldots ,^{(n-1)}(t))x(t)\nonumber \\ \text {for a.a.} \ t\in [a,\infty ),\nonumber \end {eqnarray} where $a\in (0,\infty )$, and $A_i\colon [a,\infty ) \times \mathbb {R}^{n}\to \mathbb {R}$, $i=1,\ldots ,n,$ are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.
The paper deals with the existence of a Kneser solution of the $n$-th order nonlinear differential inclusion \begin {eqnarray} {x}^{(n)}(t)\in -A_{1}(t,x(t),\ldots ,x^{(n-1)}(t)){x}^{(n-1)}(t)-\ldots -A_{n}(t,x(t),\ldots ,^{(n-1)}(t))x(t)\nonumber \\ \text {for a.a.} \ t\in [a,\infty ),\nonumber \end {eqnarray} where $a\in (0,\infty )$, and $A_i\colon [a,\infty ) \times \mathbb {R}^{n}\to \mathbb {R}$, $i=1,\ldots ,n,$ are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.
DOI : 10.21136/CMJ.2018.0191-17
Classification : 34A60, 34B15, 34B40
Keywords: asymptotic $n$-th order vector problems; $R_{\delta }$-set; inverse limit technique; Kneser problem
@article{10_21136_CMJ_2018_0191_17,
     author = {Pavla\v{c}kov\'a, Martina},
     title = {On {Kneser} solutions of the $n$-th order nonlinear differential inclusions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {99--116},
     year = {2019},
     volume = {69},
     number = {1},
     doi = {10.21136/CMJ.2018.0191-17},
     mrnumber = {3923578},
     zbl = {07088773},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0191-17/}
}
TY  - JOUR
AU  - Pavlačková, Martina
TI  - On Kneser solutions of the $n$-th order nonlinear differential inclusions
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 99
EP  - 116
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0191-17/
DO  - 10.21136/CMJ.2018.0191-17
LA  - en
ID  - 10_21136_CMJ_2018_0191_17
ER  - 
%0 Journal Article
%A Pavlačková, Martina
%T On Kneser solutions of the $n$-th order nonlinear differential inclusions
%J Czechoslovak Mathematical Journal
%D 2019
%P 99-116
%V 69
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0191-17/
%R 10.21136/CMJ.2018.0191-17
%G en
%F 10_21136_CMJ_2018_0191_17
Pavlačková, Martina. On Kneser solutions of the $n$-th order nonlinear differential inclusions. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 99-116. doi: 10.21136/CMJ.2018.0191-17

[1] Agarwal, R. P., O'Regan, D.: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic Publishers, Dordrecht (2001). | DOI | MR | JFM

[2] Andres, J., Gabor, G., Górniewicz, L.: Topological structure of solution sets to multi-valued asymptotic problems. Z. Anal. Anwend. 19 (2000), 35-60. | DOI | MR | JFM

[3] Andres, J., Gabor, G., Górniewicz, L.: Acyclicity of solution sets to functional inclusions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 49 (2002), 671-688. | DOI | MR | JFM

[4] Andres, J., Górniewicz, L.: Topological Fixed Point Principles for Boundary Value Problems. Topological Fixed Point Theory and Its Applications 1, Kluwer Academic Publishers, Dordrecht (2003). | DOI | MR | JFM

[5] Andres, J., Pavlačková, M.: Asymptotic boundary value problems for second-order differential systems. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 1462-1473. | DOI | MR | JFM

[6] Andres, J., Pavlačková, M.: Boundary value problems on noncompact intervals for the $n$-th order vector differential inclusions. Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 19 pages. | DOI | MR | JFM

[7] Appell, J., Pascale, E. De, Thái, N. H., ıko, P. P. Zabre\v: Multi-valued superpositions. Diss. Math. 345 (1995), 97 pages. | MR | JFM

[8] Aubin, J.-P., Cellina, A.: Differential Inclusions. Set-Valued Maps and Viability Theory. Grundlehren der Mathematischen Wissenschaften 264, Springer, Berlin (1984). | DOI | MR | JFM

[9] Bartušek, M., Cecchi, M., Marini, M.: On Kneser solutions of nonlinear third order differential equations. J. Math. Anal. Appl. 261 (2001), 72-84. | DOI | MR | JFM

[10] Bartušek, M., Došlá, Z.: Oscillation of third order differential equation with damping term. Czech. Math. J. 65 (2015), 301-316. | DOI | MR | JFM

[11] Borsuk, K.: Theory of Retracts. Monografie Matematyczne 44, PWN, Warszawa (1967). | MR | JFM

[12] Cecchi, M., Furi, M., Marini, M.: About the solvability of ordinary differential equations with asymptotic boundary conditions. Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 4 (1985), 329-345. | MR | JFM

[13] Fermi, E.: Un metodo statistico per la determinazione di alcune prioriet á dell'atomo. Rend. R. Accad. Nat. Lincei 6 (1927), 602-607 Italian.

[14] Filippov, A. F.: Differential Equations with Discontinuous Right-Hand Sides. Mathematics and Its Applications (Soviet Series) 18 Kluwer Academic Publishers, Dordrecht (1988). | DOI | MR | JFM

[15] Gabor, G.: On the acyclicity of fixed point sets of multivalued maps. Topol. Methods Nonlinear Anal. 14 (1999), 327-343. | DOI | MR | JFM

[16] Górniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings. Mathematics and Its Applications 495, Kluwer Academic Publishers, Dordrecht (1999). | DOI | MR | JFM

[17] Graef, J. R., Henderson, J., Ouahab, A.: Impulsive Differential Inclusions. A Fixed Point Approach. De Gruyter Series in Nonlinear Analysis and Applications 20, De Gruyter, Berlin (2013). | DOI | MR | JFM

[18] Hartman, P., Wintner, A.: On the non-increasing solutions of $y''=f(x,y,y')$. Am. J. Math. 73 (1951), 390-404. | DOI | MR | JFM

[19] Kantorovich, L. V., Akilov, G. P.: Functional Analysis in Normed Spaces. International Series of Monographs in Pure and Applied Mathematics 46, Pergamon Press, Oxford (1964). | MR | JFM

[20] Kiguradze, I. T., Chanturia, T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Mathematics and Its Applications (Soviet Series) 89, Kluwer Academic Publishers, Dordrecht (1993). | DOI | MR | JFM

[21] Kiguradze, I. T., Shekhter, B. L.: Singular boundary value problems for second-order ordinary differential equations. J. Soviet Math. 43 (1988), 2340-2417 English. Russian original translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 30 1987 105-201. | DOI | MR | JFM

[22] Kneser, A.: Untersuchung und asymptotische Darstellung der Integrale gewisser Differentialgleichungen bei grossen reellen Werten des Arguments I, II. J. für Math. 116 (1896), 178-212 117 1896 72-103 German \99999JFM99999 27.0253.03. | MR

[23] Kozlov, V. A.: On Kneser solutions of higher order nonlinear ordinary differential equations. Ark. Mat. 37 (1999), 305-322. | DOI | MR | JFM

[24] Kurzweil, J.: Ordinary Differential Equations. Introduction to the Theory of Ordinary Differential Equations in the Real Domain. Studies in Applied Mechanics 13, Elsevier Scientific Publishing, Amsterdam; SNTL Publishers of Technical Literature, Praha (1986). | MR | JFM

[25] O'Regan, D., Petruşel, A.: Leray-Schauder, Lefschetz and Krasnoselskii fixed point theory in Fréchet spaces for general classes of Volterra operators. Fixed Point Theory 9 (2008), 497-513. | MR | JFM

[26] Padhi, S., Pati, S.: Theory of Third-Order Differential Equations. Springer, New Delhi (2014). | DOI | MR | JFM

[27] Partsvania, N., Sokhadze, Z.: Oscillatory and monotone solutions of first-order nonlinear delay differential equations. Georgian Math. J. 23 (2016), 269-277. | DOI | MR | JFM

[28] Thomas, L. H.: The calculation of atomic fields. Proceedings Cambridge 23 (1927), 542-548 \99999JFM99999 53.0868.04. | DOI

[29] Vrabie, I. I.: Compactness Methods for Nonlinear Evolutions. Pitman Monographs and Surveys in Pure and Applied Mathematics 75, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1995). | MR | JFM

Cité par Sources :