A note on a conjecture on niche hypergraphs
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 93-97
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For a digraph $D$, the niche hypergraph $N\mathcal {H}(D)$ of $D$ is the hypergraph having the same set of vertices as $D$ and the set of hyperedges $E(N\mathcal {H}(D)) = \{e \subseteq V(D) \colon |e| \geq 2$ and there exists a vertex $v$ such that $e = N^{-}_{D}(v)$ or $e = N^{+}_{D}(v)\}$. A digraph is said to be acyclic if it has no directed cycle as a subdigraph. For a given hypergraph $\mathcal {H}$, the niche number $\hat {n}(\mathcal {H})$ is the smallest integer such that $\mathcal {H}$ together with $\hat {n}(\mathcal {H})$ isolated vertices is the niche hypergraph of an acyclic digraph. C. Garske, M. Sonntag and H. M. Teichert (2016) conjectured that for a linear hypercycle $\mathcal {C}_{m}$, $m \geq 2$, if $\min \{|e| \colon e \in E(\mathcal {C}_{m})\} \geq 3$, then $\hat {n}(\mathcal {C}_{m}) = 0$. In this paper, we prove that this conjecture is true.
DOI :
10.21136/CMJ.2018.0182-17
Classification :
05C65
Keywords: niche hypergraph; digraph; linear hypercycle
Keywords: niche hypergraph; digraph; linear hypercycle
@article{10_21136_CMJ_2018_0182_17,
author = {Kaemawichanurat, Pawaton and Jiarasuksakun, Thiradet},
title = {A note on a conjecture on niche hypergraphs},
journal = {Czechoslovak Mathematical Journal},
pages = {93--97},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2019},
doi = {10.21136/CMJ.2018.0182-17},
mrnumber = {3923577},
zbl = {07088772},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0182-17/}
}
TY - JOUR AU - Kaemawichanurat, Pawaton AU - Jiarasuksakun, Thiradet TI - A note on a conjecture on niche hypergraphs JO - Czechoslovak Mathematical Journal PY - 2019 SP - 93 EP - 97 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0182-17/ DO - 10.21136/CMJ.2018.0182-17 LA - en ID - 10_21136_CMJ_2018_0182_17 ER -
%0 Journal Article %A Kaemawichanurat, Pawaton %A Jiarasuksakun, Thiradet %T A note on a conjecture on niche hypergraphs %J Czechoslovak Mathematical Journal %D 2019 %P 93-97 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0182-17/ %R 10.21136/CMJ.2018.0182-17 %G en %F 10_21136_CMJ_2018_0182_17
Kaemawichanurat, Pawaton; Jiarasuksakun, Thiradet. A note on a conjecture on niche hypergraphs. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 93-97. doi: 10.21136/CMJ.2018.0182-17
Cité par Sources :