A note on a conjecture on niche hypergraphs
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 93-97.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a digraph $D$, the niche hypergraph $N\mathcal {H}(D)$ of $D$ is the hypergraph having the same set of vertices as $D$ and the set of hyperedges $E(N\mathcal {H}(D)) = \{e \subseteq V(D) \colon |e| \geq 2$ and there exists a vertex $v$ such that $e = N^{-}_{D}(v)$ or $e = N^{+}_{D}(v)\}$. A digraph is said to be acyclic if it has no directed cycle as a subdigraph. For a given hypergraph $\mathcal {H}$, the niche number $\hat {n}(\mathcal {H})$ is the smallest integer such that $\mathcal {H}$ together with $\hat {n}(\mathcal {H})$ isolated vertices is the niche hypergraph of an acyclic digraph. C. Garske, M. Sonntag and H. M. Teichert (2016) conjectured that for a linear hypercycle $\mathcal {C}_{m}$, $m \geq 2$, if $\min \{|e| \colon e \in E(\mathcal {C}_{m})\} \geq 3$, then $\hat {n}(\mathcal {C}_{m}) = 0$. In this paper, we prove that this conjecture is true.
DOI : 10.21136/CMJ.2018.0182-17
Classification : 05C65
Keywords: niche hypergraph; digraph; linear hypercycle
@article{10_21136_CMJ_2018_0182_17,
     author = {Kaemawichanurat, Pawaton and Jiarasuksakun, Thiradet},
     title = {A note on a conjecture on niche hypergraphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {93--97},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.21136/CMJ.2018.0182-17},
     mrnumber = {3923577},
     zbl = {07088772},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0182-17/}
}
TY  - JOUR
AU  - Kaemawichanurat, Pawaton
AU  - Jiarasuksakun, Thiradet
TI  - A note on a conjecture on niche hypergraphs
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 93
EP  - 97
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0182-17/
DO  - 10.21136/CMJ.2018.0182-17
LA  - en
ID  - 10_21136_CMJ_2018_0182_17
ER  - 
%0 Journal Article
%A Kaemawichanurat, Pawaton
%A Jiarasuksakun, Thiradet
%T A note on a conjecture on niche hypergraphs
%J Czechoslovak Mathematical Journal
%D 2019
%P 93-97
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0182-17/
%R 10.21136/CMJ.2018.0182-17
%G en
%F 10_21136_CMJ_2018_0182_17
Kaemawichanurat, Pawaton; Jiarasuksakun, Thiradet. A note on a conjecture on niche hypergraphs. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 93-97. doi : 10.21136/CMJ.2018.0182-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0182-17/

Cité par Sources :