On realizability of sign patterns by real polynomials
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 853-874
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The classical Descartes' rule of signs limits the number of positive roots of a real polynomial in one variable by the number of sign changes in the sequence of its coefficients. One can ask the question which pairs of nonnegative integers $(p,n)$, chosen in accordance with this rule and with some other natural conditions, can be the pairs of numbers of positive and negative roots of a real polynomial with prescribed signs of the coefficients. The paper solves this problem for degree $8$ polynomials.
DOI :
10.21136/CMJ.2018.0163-17
Classification :
26C10, 30C15
Keywords: real polynomial in one variable; sign pattern; Descartes' rule of signs
Keywords: real polynomial in one variable; sign pattern; Descartes' rule of signs
@article{10_21136_CMJ_2018_0163_17,
author = {Kostov, Vladimir},
title = {On realizability of sign patterns by real polynomials},
journal = {Czechoslovak Mathematical Journal},
pages = {853--874},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {2018},
doi = {10.21136/CMJ.2018.0163-17},
mrnumber = {3851896},
zbl = {06986977},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0163-17/}
}
TY - JOUR AU - Kostov, Vladimir TI - On realizability of sign patterns by real polynomials JO - Czechoslovak Mathematical Journal PY - 2018 SP - 853 EP - 874 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0163-17/ DO - 10.21136/CMJ.2018.0163-17 LA - en ID - 10_21136_CMJ_2018_0163_17 ER -
%0 Journal Article %A Kostov, Vladimir %T On realizability of sign patterns by real polynomials %J Czechoslovak Mathematical Journal %D 2018 %P 853-874 %V 68 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0163-17/ %R 10.21136/CMJ.2018.0163-17 %G en %F 10_21136_CMJ_2018_0163_17
Kostov, Vladimir. On realizability of sign patterns by real polynomials. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 3, pp. 853-874. doi: 10.21136/CMJ.2018.0163-17
Cité par Sources :