$n$-strongly Gorenstein graded modules
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 55-73 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a graded ring and $n\geq 1$ an integer. We introduce and study $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules. Some examples are given to show that $n$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules need not be $m$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules whenever $n>m$. Many properties of the $n$-strongly Gorenstein gr-injective and gr-flat modules are discussed, some known results are generalized. Then we investigate the relations between the graded and the ungraded $n$-strongly Gorenstein injective (or flat) modules. In addition, the connections between the $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules are considered.
Let $R$ be a graded ring and $n\geq 1$ an integer. We introduce and study $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules. Some examples are given to show that $n$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules need not be $m$-strongly Gorenstein gr-injective (gr-projective, gr-flat, respectively) modules whenever $n>m$. Many properties of the $n$-strongly Gorenstein gr-injective and gr-flat modules are discussed, some known results are generalized. Then we investigate the relations between the graded and the ungraded $n$-strongly Gorenstein injective (or flat) modules. In addition, the connections between the $n$-strongly Gorenstein gr-projective, gr-injective and gr-flat modules are considered.
DOI : 10.21136/CMJ.2018.0160-17
Classification : 16E05, 16W50, 18G25
Keywords: $n$-strongly Gorenstein gr-injective module; $n$-strongly Gorenstein gr-flat module; $n$-strongly Gorenstein gr-projective module
@article{10_21136_CMJ_2018_0160_17,
     author = {Gao, Zenghui and Peng, Jie},
     title = {$n$-strongly {Gorenstein} graded modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {55--73},
     year = {2019},
     volume = {69},
     number = {1},
     doi = {10.21136/CMJ.2018.0160-17},
     mrnumber = {3923574},
     zbl = {07088769},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0160-17/}
}
TY  - JOUR
AU  - Gao, Zenghui
AU  - Peng, Jie
TI  - $n$-strongly Gorenstein graded modules
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 55
EP  - 73
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0160-17/
DO  - 10.21136/CMJ.2018.0160-17
LA  - en
ID  - 10_21136_CMJ_2018_0160_17
ER  - 
%0 Journal Article
%A Gao, Zenghui
%A Peng, Jie
%T $n$-strongly Gorenstein graded modules
%J Czechoslovak Mathematical Journal
%D 2019
%P 55-73
%V 69
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0160-17/
%R 10.21136/CMJ.2018.0160-17
%G en
%F 10_21136_CMJ_2018_0160_17
Gao, Zenghui; Peng, Jie. $n$-strongly Gorenstein graded modules. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 55-73. doi: 10.21136/CMJ.2018.0160-17

[1] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-injective and gr-projective modules. Commun. Algebra 26 (1998), 225-240. | DOI | MR | JFM

[2] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-flat modules. Commun. Algebra 26 (1998), 3195-3209. | DOI | MR | JFM

[3] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Covers and envelopes over gr-Gorenstein rings. J. Algebra 215 (1999), 437-459. | DOI | MR | JFM

[4] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: FP-gr-injective modules and gr-FC-rings. Algebra and Number Theory. Proc. Conf., Fez, Morocco M. Boulagouaz Lecture Notes in Pure and Appl. Math. 208, Marcel Dekker, New York (2000), 1-11. | DOI | MR | JFM

[5] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein gr-injective modules over graded isolated singularities. Commun. Algebra 28 (2000), 3197-3207. | DOI | MR | JFM

[6] Asensio, M. J., Ramos, J. A. López, Torrecillas, B.: Gorenstein modules over Zariski filtered rings. Commun. Algebra 31 (2003), 4371-4385. | DOI | MR | JFM

[7] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94, American Mathematical Society, Providence (1969). | DOI | MR | JFM

[8] Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective, and flat modules. J. Pure Appl. Algebra 210 (2007), 437-445. | DOI | MR | JFM

[9] Bennis, D., Mahdou, N.: A generalization of strongly Gorenstein projective modules. J. Algebra Appl. 8 (2009), 219-227. | DOI | MR | JFM

[10] Christensen, L. W.: Gorenstein Dimensions. Lecture Notes in Mathematics 1747. Springer, Berlin (2000). | DOI | MR | JFM

[11] Ding, N. Q., Chen, J. L.: The flat dimensions of injective modules. Manuscr. Math. 78 (1993), 165-177. | DOI | MR | JFM

[12] Ding, N. Q., Chen, J. L.: Coherent rings with finite self-FP-injective dimension. Commun. Algebra 24 (1996), 2963-2980. | DOI | MR | JFM

[13] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. | DOI | MR | JFM

[14] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de De Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). | DOI | MR | JFM

[15] Enochs, E. E., Jenda, O. M. G., Torrecillas, B.: Gorenstein flat modules. J. Nanjing Univ., Math. Biq. 10 (1993), 1-9. | MR | JFM

[16] Enochs, E. E., Ramos, J. A. López: Gorenstein Flat Modules. Nova Science Publishers, Huntington (2001). | MR | JFM

[17] Rozas, J. R. García, López-Ramos, J. A., Torrecillas, B.: On the existence of flat covers in $R$-$ gr$. Commun. Algebra 29 (2001), 3341-3349. | DOI | MR | JFM

[18] Hermann, M., Ikeda, S., Orbanz, U.: Equimultiplicity and Blowing Up. An Algebraic Study. Springer, Berlin (1988). | DOI | MR | JFM

[19] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. | DOI | MR | JFM

[20] Mao, L. X.: Strongly Gorenstein graded modules. Front. Math. China 12 (2017), 157-176. | DOI | MR | JFM

[21] Năstăsescu, C.: Some constructions over graded rings: Applications. J. Algebra 120 (1989), 119-138. | DOI | MR | JFM

[22] Năstăsescu, C., Oystaeyen, F. Van: Graded Ring Theory. North-Holland Mathematical Library 28, North-Holland Publishing Company, Amsterdam (1982). | MR | JFM

[23] Năstăsescu, C., Oystaeyen, F. Van: Methods of Graded Rings. Lecture Notes in Mathematics 1836, Springer, Berlin (2004). | DOI | MR | JFM

[24] Stenström, B.: Rings of Quotients. Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975), German. | MR | JFM

[25] Yang, X., Liu, Z.: Strongly Gorenstein projective, injective and flat modules. J. Algebra 320 (2008), 2659-2674. | DOI | MR | JFM

[26] Yang, X., Liu, Z.: FP-gr-injective modules. Math. J. Okayama Univ. 53 (2011), 83-100. | MR | JFM

[27] Zhao, G. Q., Huang, Z. Y.: $n$-strongly Gorenstein projective, injective and flat modules. Commun. Algebra 39 (2011), 3044-3062. | DOI | MR | JFM

Cité par Sources :