Keywords: stochastic partial differential equation; stability of the method of lines; white noise; Volterra stochastic equation
@article{10_21136_CMJ_2018_0155_16,
author = {Wrzosek, Monika and Ziemla\'nska, Maria},
title = {The method of lines for hyperbolic stochastic functional partial differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {323--339},
year = {2018},
volume = {68},
number = {2},
doi = {10.21136/CMJ.2018.0155-16},
mrnumber = {3819177},
zbl = {06890376},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0155-16/}
}
TY - JOUR AU - Wrzosek, Monika AU - Ziemlańska, Maria TI - The method of lines for hyperbolic stochastic functional partial differential equations JO - Czechoslovak Mathematical Journal PY - 2018 SP - 323 EP - 339 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0155-16/ DO - 10.21136/CMJ.2018.0155-16 LA - en ID - 10_21136_CMJ_2018_0155_16 ER -
%0 Journal Article %A Wrzosek, Monika %A Ziemlańska, Maria %T The method of lines for hyperbolic stochastic functional partial differential equations %J Czechoslovak Mathematical Journal %D 2018 %P 323-339 %V 68 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0155-16/ %R 10.21136/CMJ.2018.0155-16 %G en %F 10_21136_CMJ_2018_0155_16
Wrzosek, Monika; Ziemlańska, Maria. The method of lines for hyperbolic stochastic functional partial differential equations. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 323-339. doi: 10.21136/CMJ.2018.0155-16
[1] Ashyralyev, A., Koksal, M. E., Agarwal, R. P.: A difference scheme for Cauchy problem for the hyperbolic equation with self-adjoint operator. Math. Comput. Modelling 52 (2010), 409-424. | DOI | MR | JFM
[2] Ashyralyev, A., Yurtsever, H. A.: The stability of difference schemes of second-order of accuracy for hyperbolic-parabolic equations. Comput. Math. Appl. 52 (2006), 259-268. | DOI | MR | JFM
[3] Bahuguna, D., Dabas, J., Shukla, R. K.: Method of lines to hyperbolic integro-differential equations in $\mathbb{R}^n$. Nonlinear Dyn. Syst. Theory 8 (2008), 317-328. | MR | JFM
[4] Bátkai, A., Csomós, P., Nickel, G.: Operator splittings and spatial approximations for evolution equations. J. Evol. Equ. 9 (2009), 613-636. | DOI | MR | JFM
[5] Berger, M. A., Mizel, V. J.: Volterra equations with Ito integrals I. J. Integral Equations 2 (1980), 187-245. | MR | JFM
[6] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1992). | DOI | MR | JFM
[7] Debbi, L., Dozzi, M.: On a space discretization scheme for the fractional stochastic heat equations. Avaible at | arXiv
[8] Friedman, A.: Stochastic Differential Equations and Applications, Vol. 1. Probability and Mathematical Statistics 28, Academic Press, New York (1975). | MR | JFM
[9] Funaki, T.: Construction of a solution of random transport equation with boundary condition. J. Math. Soc. Japan 31 (1979), 719-744. | DOI | MR | JFM
[10] Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations. A Modeling, White Noise Functional Approach. Probability and Its Applications, Birkhäuser, Basel (1996). | DOI | MR | JFM
[11] Kamont, Z.: Hyperbolic Functional Differential Inequalities and Applications. Mathematics and Its Applications 486, Kluwer Academic Publishers, Dordrecht (1999). | DOI | MR | JFM
[12] Kim, J. U.: On the Cauchy problem for the transport equation with random noise. J. Funct. Anal. 259 (2010), 3328-3359. | DOI | MR | JFM
[13] Klebaner, F. C.: Introduction to Stochastic Calculus with Applications. Imperial College Press, London (2005). | DOI | MR | JFM
[14] Kreiss, H.-O., Scherer, G.: Method of lines for hyperbolic differential equations. SIAM J. Numer. Anal. 29 (1992), 640-646. | DOI | MR | JFM
[15] Leszczyński, H.: Quasi-linearisation methods for a nonlinear heat equation with functional dependence. Georgian Math. J. 7 (2000), 97-116. | DOI | MR | JFM
[16] Leszczyński, H.: Comparison ODE theorems related to the method of lines. J. Appl. Anal. 17 (2011), 137-154. | DOI | MR | JFM
[17] McDonald, S.: Finite difference approximation for linear stochastic partial differential equation with method of lines. MPRA Paper No. 3983. Avaible at http://mpra.ub.uni-muenchen.de/3983 (2006).
[19] Quer-Sardanyons, L., Sanz-Solé, M.: Space semi-discretisations for a stochastic wave equation. Potential Anal. 24 (2006), 303-332. | DOI | MR | JFM
[20] Reddy, S. C., Trefethen, L. N.: Stability of the method of lines. Numer. Math. 62 (1992), 235-267. | DOI | MR | JFM
[21] Rößler, A., Seaïd, M., Zahri, M.: Method of lines for stochastic boundary-value problems with additive noise. Appl. Math. Comput. 199 (2008), 301-314. | DOI | MR | JFM
[22] Sharma, K. K., Singh, P.: Hyperbolic partial differential-difference equation in the mathematical modeling of neuronal firing and its numerical solution. Appl. Math. Comput. 201 (2008), 229-238. | DOI | MR | JFM
[23] Yoo, H.: Semi-discretization of stochastic partial differential equations on $\Bbb R^1$ by a finite-difference method. Math. Comput. 69 (2000), 653-666. | DOI | MR | JFM
Cité par Sources :