The method of lines for hyperbolic stochastic functional partial differential equations
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 323-339 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We apply an approximation by means of the method of lines for hyperbolic stochastic functional partial differential equations driven by one-dimensional Brownian motion. We study the stability with respect to small $L^2$-perturbations.
We apply an approximation by means of the method of lines for hyperbolic stochastic functional partial differential equations driven by one-dimensional Brownian motion. We study the stability with respect to small $L^2$-perturbations.
DOI : 10.21136/CMJ.2018.0155-16
Classification : 35R60, 49M25, 60H15
Keywords: stochastic partial differential equation; stability of the method of lines; white noise; Volterra stochastic equation
@article{10_21136_CMJ_2018_0155_16,
     author = {Wrzosek, Monika and Ziemla\'nska, Maria},
     title = {The method of lines for hyperbolic stochastic functional partial differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {323--339},
     year = {2018},
     volume = {68},
     number = {2},
     doi = {10.21136/CMJ.2018.0155-16},
     mrnumber = {3819177},
     zbl = {06890376},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0155-16/}
}
TY  - JOUR
AU  - Wrzosek, Monika
AU  - Ziemlańska, Maria
TI  - The method of lines for hyperbolic stochastic functional partial differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 323
EP  - 339
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0155-16/
DO  - 10.21136/CMJ.2018.0155-16
LA  - en
ID  - 10_21136_CMJ_2018_0155_16
ER  - 
%0 Journal Article
%A Wrzosek, Monika
%A Ziemlańska, Maria
%T The method of lines for hyperbolic stochastic functional partial differential equations
%J Czechoslovak Mathematical Journal
%D 2018
%P 323-339
%V 68
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0155-16/
%R 10.21136/CMJ.2018.0155-16
%G en
%F 10_21136_CMJ_2018_0155_16
Wrzosek, Monika; Ziemlańska, Maria. The method of lines for hyperbolic stochastic functional partial differential equations. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 323-339. doi: 10.21136/CMJ.2018.0155-16

[1] Ashyralyev, A., Koksal, M. E., Agarwal, R. P.: A difference scheme for Cauchy problem for the hyperbolic equation with self-adjoint operator. Math. Comput. Modelling 52 (2010), 409-424. | DOI | MR | JFM

[2] Ashyralyev, A., Yurtsever, H. A.: The stability of difference schemes of second-order of accuracy for hyperbolic-parabolic equations. Comput. Math. Appl. 52 (2006), 259-268. | DOI | MR | JFM

[3] Bahuguna, D., Dabas, J., Shukla, R. K.: Method of lines to hyperbolic integro-differential equations in $\mathbb{R}^n$. Nonlinear Dyn. Syst. Theory 8 (2008), 317-328. | MR | JFM

[4] Bátkai, A., Csomós, P., Nickel, G.: Operator splittings and spatial approximations for evolution equations. J. Evol. Equ. 9 (2009), 613-636. | DOI | MR | JFM

[5] Berger, M. A., Mizel, V. J.: Volterra equations with Ito integrals I. J. Integral Equations 2 (1980), 187-245. | MR | JFM

[6] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 44, Cambridge University Press, Cambridge (1992). | DOI | MR | JFM

[7] Debbi, L., Dozzi, M.: On a space discretization scheme for the fractional stochastic heat equations. Avaible at | arXiv

[8] Friedman, A.: Stochastic Differential Equations and Applications, Vol. 1. Probability and Mathematical Statistics 28, Academic Press, New York (1975). | MR | JFM

[9] Funaki, T.: Construction of a solution of random transport equation with boundary condition. J. Math. Soc. Japan 31 (1979), 719-744. | DOI | MR | JFM

[10] Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations. A Modeling, White Noise Functional Approach. Probability and Its Applications, Birkhäuser, Basel (1996). | DOI | MR | JFM

[11] Kamont, Z.: Hyperbolic Functional Differential Inequalities and Applications. Mathematics and Its Applications 486, Kluwer Academic Publishers, Dordrecht (1999). | DOI | MR | JFM

[12] Kim, J. U.: On the Cauchy problem for the transport equation with random noise. J. Funct. Anal. 259 (2010), 3328-3359. | DOI | MR | JFM

[13] Klebaner, F. C.: Introduction to Stochastic Calculus with Applications. Imperial College Press, London (2005). | DOI | MR | JFM

[14] Kreiss, H.-O., Scherer, G.: Method of lines for hyperbolic differential equations. SIAM J. Numer. Anal. 29 (1992), 640-646. | DOI | MR | JFM

[15] Leszczyński, H.: Quasi-linearisation methods for a nonlinear heat equation with functional dependence. Georgian Math. J. 7 (2000), 97-116. | DOI | MR | JFM

[16] Leszczyński, H.: Comparison ODE theorems related to the method of lines. J. Appl. Anal. 17 (2011), 137-154. | DOI | MR | JFM

[17] McDonald, S.: Finite difference approximation for linear stochastic partial differential equation with method of lines. MPRA Paper No. 3983. Avaible at http://mpra.ub.uni-muenchen.de/3983 (2006).

[19] Quer-Sardanyons, L., Sanz-Solé, M.: Space semi-discretisations for a stochastic wave equation. Potential Anal. 24 (2006), 303-332. | DOI | MR | JFM

[20] Reddy, S. C., Trefethen, L. N.: Stability of the method of lines. Numer. Math. 62 (1992), 235-267. | DOI | MR | JFM

[21] Rößler, A., Seaïd, M., Zahri, M.: Method of lines for stochastic boundary-value problems with additive noise. Appl. Math. Comput. 199 (2008), 301-314. | DOI | MR | JFM

[22] Sharma, K. K., Singh, P.: Hyperbolic partial differential-difference equation in the mathematical modeling of neuronal firing and its numerical solution. Appl. Math. Comput. 201 (2008), 229-238. | DOI | MR | JFM

[23] Yoo, H.: Semi-discretization of stochastic partial differential equations on $\Bbb R^1$ by a finite-difference method. Math. Comput. 69 (2000), 653-666. | DOI | MR | JFM

Cité par Sources :