A remark on weak McShane integral
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 45-53 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We characterize the weak McShane integrability of a vector-valued function on a finite Radon measure space by means of only finite McShane partitions. We also obtain a similar characterization for the Fremlin generalized McShane integral.
We characterize the weak McShane integrability of a vector-valued function on a finite Radon measure space by means of only finite McShane partitions. We also obtain a similar characterization for the Fremlin generalized McShane integral.
DOI : 10.21136/CMJ.2018.0153-17
Classification : 28B05
Keywords: weak McShane integral; finite McShane partition; Radon measure space
@article{10_21136_CMJ_2018_0153_17,
     author = {Yoshitomi, Kazushi},
     title = {A remark on weak {McShane} integral},
     journal = {Czechoslovak Mathematical Journal},
     pages = {45--53},
     year = {2019},
     volume = {69},
     number = {1},
     doi = {10.21136/CMJ.2018.0153-17},
     mrnumber = {3923573},
     zbl = {07088768},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0153-17/}
}
TY  - JOUR
AU  - Yoshitomi, Kazushi
TI  - A remark on weak McShane integral
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 45
EP  - 53
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0153-17/
DO  - 10.21136/CMJ.2018.0153-17
LA  - en
ID  - 10_21136_CMJ_2018_0153_17
ER  - 
%0 Journal Article
%A Yoshitomi, Kazushi
%T A remark on weak McShane integral
%J Czechoslovak Mathematical Journal
%D 2019
%P 45-53
%V 69
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0153-17/
%R 10.21136/CMJ.2018.0153-17
%G en
%F 10_21136_CMJ_2018_0153_17
Yoshitomi, Kazushi. A remark on weak McShane integral. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 45-53. doi: 10.21136/CMJ.2018.0153-17

[1] Bauer, H.: Measure and Integration Theory. De Gruyter Studies in Mathematics 26. Walter de Gruyter, Berlin (2001). | MR | JFM

[2] Faure, C.-A., Mawhin, J.: Integration over unbounded multidimensional intervals. J. Math. Anal. Appl. 205 (1997), 65-77. | DOI | MR | JFM

[3] Fremlin, D. H.: Topological Riesz Spaces and Measure Theory. Cambridge University Press, London (1974). | MR | JFM

[4] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. | DOI | MR | JFM

[5] Kelley, J. L., Srinivasan, T. P.: Measure and Integral Vol. 1. Graduate Texts in Mathematics 116. Springer, New York (1988). | DOI | MR | JFM

[6] Saadoune, M., Sayyad, R.: The weak McShane integral. Czech. Math. J. 64 (2014), 387-418. | DOI | MR | JFM

[7] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis Vol. 10. World Scientific, Singapore (2005). | DOI | MR | JFM

[8] Talagrand, M.: Pettis integral and measure theory. Mem. Am. Math. Soc. 307 (1984),\99999MR99999 0756174 . | DOI | MR | JFM

Cité par Sources :