The size of the Lerch zeta-function at places symmetric with respect to the line $\Re (s)=1/2$
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 25-37
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\zeta (s)$ be the Riemann zeta-function. If $t\geq 6.8$ and $\sigma >1/2$, then it is known that the inequality $|\zeta (1-s)|>|\zeta (s)|$ is valid except at the zeros of $\zeta (s)$. Here we investigate the Lerch zeta-function $L(\lambda ,\alpha ,s)$ which usually has many zeros off the critical line and it is expected that these zeros are asymmetrically distributed with respect to the critical line. However, for equal parameters $\lambda =\alpha $ it is still possible to obtain a certain version of the inequality $|L(\lambda ,\lambda ,1-\overline {s})|>|L(\lambda ,\lambda ,s)|$.
Let $\zeta (s)$ be the Riemann zeta-function. If $t\geq 6.8$ and $\sigma >1/2$, then it is known that the inequality $|\zeta (1-s)|>|\zeta (s)|$ is valid except at the zeros of $\zeta (s)$. Here we investigate the Lerch zeta-function $L(\lambda ,\alpha ,s)$ which usually has many zeros off the critical line and it is expected that these zeros are asymmetrically distributed with respect to the critical line. However, for equal parameters $\lambda =\alpha $ it is still possible to obtain a certain version of the inequality $|L(\lambda ,\lambda ,1-\overline {s})|>|L(\lambda ,\lambda ,s)|$.
DOI :
10.21136/CMJ.2018.0149-17
Classification :
11M35
Keywords: Lerch zeta-function; functional equation; zero distribution
Keywords: Lerch zeta-function; functional equation; zero distribution
@article{10_21136_CMJ_2018_0149_17,
author = {Garunk\v{s}tis, Ram\={u}nas and Grigutis, Andrius},
title = {The size of the {Lerch} zeta-function at places symmetric with respect to the line $\Re (s)=1/2$},
journal = {Czechoslovak Mathematical Journal},
pages = {25--37},
year = {2019},
volume = {69},
number = {1},
doi = {10.21136/CMJ.2018.0149-17},
mrnumber = {3923571},
zbl = {07088766},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0149-17/}
}
TY - JOUR AU - Garunkštis, Ramūnas AU - Grigutis, Andrius TI - The size of the Lerch zeta-function at places symmetric with respect to the line $\Re (s)=1/2$ JO - Czechoslovak Mathematical Journal PY - 2019 SP - 25 EP - 37 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0149-17/ DO - 10.21136/CMJ.2018.0149-17 LA - en ID - 10_21136_CMJ_2018_0149_17 ER -
%0 Journal Article %A Garunkštis, Ramūnas %A Grigutis, Andrius %T The size of the Lerch zeta-function at places symmetric with respect to the line $\Re (s)=1/2$ %J Czechoslovak Mathematical Journal %D 2019 %P 25-37 %V 69 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0149-17/ %R 10.21136/CMJ.2018.0149-17 %G en %F 10_21136_CMJ_2018_0149_17
Garunkštis, Ramūnas; Grigutis, Andrius. The size of the Lerch zeta-function at places symmetric with respect to the line $\Re (s)=1/2$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 25-37. doi: 10.21136/CMJ.2018.0149-17
Cité par Sources :