The size of the Lerch zeta-function at places symmetric with respect to the line $\Re (s)=1/2$
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 25-37.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\zeta (s)$ be the Riemann zeta-function. If $t\geq 6.8$ and $\sigma >1/2$, then it is known that the inequality $|\zeta (1-s)|>|\zeta (s)|$ is valid except at the zeros of $\zeta (s)$. Here we investigate the Lerch zeta-function $L(\lambda ,\alpha ,s)$ which usually has many zeros off the critical line and it is expected that these zeros are asymmetrically distributed with respect to the critical line. However, for equal parameters $\lambda =\alpha $ it is still possible to obtain a certain version of the inequality $|L(\lambda ,\lambda ,1-\overline {s})|>|L(\lambda ,\lambda ,s)|$.
DOI : 10.21136/CMJ.2018.0149-17
Classification : 11M35
Keywords: Lerch zeta-function; functional equation; zero distribution
@article{10_21136_CMJ_2018_0149_17,
     author = {Garunk\v{s}tis, Ram\={u}nas and Grigutis, Andrius},
     title = {The size of the {Lerch} zeta-function at places symmetric with respect to the line $\Re (s)=1/2$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {25--37},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.21136/CMJ.2018.0149-17},
     mrnumber = {3923571},
     zbl = {07088766},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0149-17/}
}
TY  - JOUR
AU  - Garunkštis, Ramūnas
AU  - Grigutis, Andrius
TI  - The size of the Lerch zeta-function at places symmetric with respect to the line $\Re (s)=1/2$
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 25
EP  - 37
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0149-17/
DO  - 10.21136/CMJ.2018.0149-17
LA  - en
ID  - 10_21136_CMJ_2018_0149_17
ER  - 
%0 Journal Article
%A Garunkštis, Ramūnas
%A Grigutis, Andrius
%T The size of the Lerch zeta-function at places symmetric with respect to the line $\Re (s)=1/2$
%J Czechoslovak Mathematical Journal
%D 2019
%P 25-37
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0149-17/
%R 10.21136/CMJ.2018.0149-17
%G en
%F 10_21136_CMJ_2018_0149_17
Garunkštis, Ramūnas; Grigutis, Andrius. The size of the Lerch zeta-function at places symmetric with respect to the line $\Re (s)=1/2$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 25-37. doi : 10.21136/CMJ.2018.0149-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0149-17/

Cité par Sources :