The size of the Lerch zeta-function at places symmetric with respect to the line $\Re (s)=1/2$
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 25-37 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\zeta (s)$ be the Riemann zeta-function. If $t\geq 6.8$ and $\sigma >1/2$, then it is known that the inequality $|\zeta (1-s)|>|\zeta (s)|$ is valid except at the zeros of $\zeta (s)$. Here we investigate the Lerch zeta-function $L(\lambda ,\alpha ,s)$ which usually has many zeros off the critical line and it is expected that these zeros are asymmetrically distributed with respect to the critical line. However, for equal parameters $\lambda =\alpha $ it is still possible to obtain a certain version of the inequality $|L(\lambda ,\lambda ,1-\overline {s})|>|L(\lambda ,\lambda ,s)|$.
Let $\zeta (s)$ be the Riemann zeta-function. If $t\geq 6.8$ and $\sigma >1/2$, then it is known that the inequality $|\zeta (1-s)|>|\zeta (s)|$ is valid except at the zeros of $\zeta (s)$. Here we investigate the Lerch zeta-function $L(\lambda ,\alpha ,s)$ which usually has many zeros off the critical line and it is expected that these zeros are asymmetrically distributed with respect to the critical line. However, for equal parameters $\lambda =\alpha $ it is still possible to obtain a certain version of the inequality $|L(\lambda ,\lambda ,1-\overline {s})|>|L(\lambda ,\lambda ,s)|$.
DOI : 10.21136/CMJ.2018.0149-17
Classification : 11M35
Keywords: Lerch zeta-function; functional equation; zero distribution
@article{10_21136_CMJ_2018_0149_17,
     author = {Garunk\v{s}tis, Ram\={u}nas and Grigutis, Andrius},
     title = {The size of the {Lerch} zeta-function at places symmetric with respect to the line $\Re (s)=1/2$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {25--37},
     year = {2019},
     volume = {69},
     number = {1},
     doi = {10.21136/CMJ.2018.0149-17},
     mrnumber = {3923571},
     zbl = {07088766},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0149-17/}
}
TY  - JOUR
AU  - Garunkštis, Ramūnas
AU  - Grigutis, Andrius
TI  - The size of the Lerch zeta-function at places symmetric with respect to the line $\Re (s)=1/2$
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 25
EP  - 37
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0149-17/
DO  - 10.21136/CMJ.2018.0149-17
LA  - en
ID  - 10_21136_CMJ_2018_0149_17
ER  - 
%0 Journal Article
%A Garunkštis, Ramūnas
%A Grigutis, Andrius
%T The size of the Lerch zeta-function at places symmetric with respect to the line $\Re (s)=1/2$
%J Czechoslovak Mathematical Journal
%D 2019
%P 25-37
%V 69
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0149-17/
%R 10.21136/CMJ.2018.0149-17
%G en
%F 10_21136_CMJ_2018_0149_17
Garunkštis, Ramūnas; Grigutis, Andrius. The size of the Lerch zeta-function at places symmetric with respect to the line $\Re (s)=1/2$. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 25-37. doi: 10.21136/CMJ.2018.0149-17

[1] Alzer, H.: Monotonicity properties of the Riemann zeta function. Mediterr. J. Math. 9 (2012), 439-452. | DOI | MR | JFM

[2] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics, Springer, New York (1976). | DOI | MR | JFM

[3] Berndt, B. C.: On the zeros of a class of Dirichlet series I. Ill. J. Math. 14 (1970), 244-258. | DOI | MR | JFM

[4] Dixon, R. D., Schoenfeld, L.: The size of the Riemann zeta-function at places symmetric with respect to the point ${1\over 2}$. Duke Math. J. 33 (1966), 291-292. | DOI | MR | JFM

[5] Garunkštis, R.: On a positivity property of the Riemann $\xi$-function. Lith. Math. J. 42 (2002), 140-145 and Liet. Mat. Rink. 42 2002 179-184. | DOI | MR | JFM

[6] Garunkštis, R., Grigutis, A.: The size of the Selberg zeta-function at places symmetric with respect to the line $ Re(s)=1/2$. Result. Math. 70 (2016), 271-281. | DOI | MR | JFM

[7] Garunkštis, R., Laurinčikas, A.: On zeros of the Lerch zeta-function. Number Theory and Its Applications. Proc. of the Conf. Held at the RIMS, Kyoto, 1997 Dev. Math. 2, Kluwer Academic Publishers, Dordrecht S. Kanemitsu et al. (1999), 129-143. | MR | JFM

[8] Garunkštis, R., Laurinčikas, A., Steuding, J.: On the mean square of Lerch zeta-functions. Arch. Math. 80 (2003), 47-60. | DOI | MR | JFM

[9] Garunkštis, R., Steuding, J.: On the zero distributions of Lerch zeta-functions. Analysis, München 22 (2002), 1-12. | DOI | MR | JFM

[10] Garunkštis, R., Steuding, J.: Do Lerch zeta-functions satisfy the Lindelöf hypothesis?. Analytic and Probabilistic Methods in Number Theory. Proc. of the Third International Conf. in Honour of J. Kubilius, Palanga, 2001 TEV, Vilnius A. Dubickas, et al. (2002), 61-74. | MR | JFM

[11] Garunkštis, R., unas, R. Tamoši\=: Symmetry of zeros of Lerch zeta-function for equal parameters. Lith. Math. J. 57 (2017), 433-440. | DOI | MR | JFM

[12] Grigutis, A., unas, D. Šiauči\=: On the modulus of the Selberg zeta-functions in the critical strip. Math. Model. Anal. 20 (2015), 852-865. | DOI | MR

[13] Hinkkanen, A.: On functions of bounded type. Complex Variables, Theory Appl. 34 (1997), 119-139. | DOI | MR | JFM

[14] Lagarias, J.: On a positivity property of the Riemann $\xi$-function. Acta Arith. 89 (1999), 217-234 correction ibid. 116 2005 293-294. | DOI | MR | JFM

[15] Laurinčikas, A., Garunkštis, R.: The Lerch Zeta-Function. Kluwer Academic Publishers, Dordrecht (2002). | DOI | MR | JFM

[16] Matiyasevich, Y., Saidak, F., Zvengrowski, P.: Horizontal monotonicity of the modulus of the zeta function, $L$-functions, and related functions. Acta Arith. 166 (2014), 189-200. | DOI | MR | JFM

[17] Nazardonyavi, S., Yakubovich, S.: Another proof of Spira's inequality and its application to the Riemann hypothesis. J. Math. Inequal. 7 (2013), 167-174. | DOI | MR | JFM

[18] Saidak, F., Zvengrowski, P.: On the modulus of the Riemann zeta function in the critical strip. Math. Slovaca 53 (2003), 145-172. | MR | JFM

[19] Sondow, J., Dumitrescu, C.: A monotonicity property of Riemann's xi function and a reformulation of the Riemann hypothesis. Period. Math. Hung. 60 (2010), 37-40. | DOI | MR | JFM

[20] Spira, R.: An inequality for the Riemann zeta function. Duke Math. J. 32 (1965), 247-250. | DOI | MR | JFM

[21] Spira, R.: Calculation of the Ramanujan $\tau $-Dirichlet series. Math. Comput. 27 (1973), 379-385. | DOI | MR | JFM

[22] Spira, R.: Zeros of Hurwitz zeta functions. Math. Comput. 30 (1976), 863-866. | DOI | MR | JFM

[23] Titchmarsh, E. C.: The Theory of Functions. Oxford University Press, Oxford (1939). | MR | JFM

[24] Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function. Oxford Science Publications, Oxford University Press, New York (1986). | MR | JFM

[25] Trudgian, T. S.: A short extension of two of Spira's results. J. Math. Inequal. 9 (2015), 795-798. | DOI | MR | JFM

Cité par Sources :