On $\sigma $-permutably embedded subgroups of finite groups
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 11-24
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\sigma =\{\sigma _i\colon i\in I\}$ be some partition of the set of all primes $\mathbb {P}$, $G$ be a finite group and $\sigma (G)=\{\sigma _i\colon \sigma _i\cap \pi (G)\neq \emptyset \}$. A set $\mathcal {H}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every non-identity member of $\mathcal {H}$ is a Hall $\sigma _i$-subgroup of $G$ and $\mathcal {H}$ contains exactly one Hall $\sigma _i$-subgroup of $G$ for every $\sigma _i\in \sigma (G)$. $G$ is said to be $\sigma $-full if $G$ possesses a complete Hall $\sigma $-set. A subgroup $H$ of $G$ is $\sigma $-permutable in $G$ if $G$ possesses a complete Hall $\sigma $-set $\mathcal {H}$ such that $HA^x$= $A^xH$ for all $A\in \mathcal {H}$ and all $x\in G$. A subgroup $H$ of $G$ is $\sigma $-permutably embedded in $G$ if $H$ is $\sigma $-full and for every $\sigma _i\in \sigma (H)$, every Hall $\sigma _i$-subgroup of $H$ is also a Hall $\sigma _i$-subgroup of some $\sigma $-permutable subgroup of $G$. \endgraf By using the $\sigma $-permutably embedded subgroups, we establish some new criteria for a group $G$ to be soluble and supersoluble, and also give the conditions under which a normal subgroup of $G$ is hypercyclically embedded. Some known results are generalized.
DOI :
10.21136/CMJ.2018.0148-17
Classification :
20D10, 20D20, 20D35
Keywords: finite group; $\sigma $-subnormal subgroup; $\sigma $-permutably embedded subgroup; \hbox {$\sigma $-soluble} group; supersoluble group
Keywords: finite group; $\sigma $-subnormal subgroup; $\sigma $-permutably embedded subgroup; \hbox {$\sigma $-soluble} group; supersoluble group
@article{10_21136_CMJ_2018_0148_17,
author = {Cao, Chenchen and Zhang, Li and Guo, Wenbin},
title = {On $\sigma $-permutably embedded subgroups of finite groups},
journal = {Czechoslovak Mathematical Journal},
pages = {11--24},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2019},
doi = {10.21136/CMJ.2018.0148-17},
mrnumber = {3923570},
zbl = {07088765},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0148-17/}
}
TY - JOUR AU - Cao, Chenchen AU - Zhang, Li AU - Guo, Wenbin TI - On $\sigma $-permutably embedded subgroups of finite groups JO - Czechoslovak Mathematical Journal PY - 2019 SP - 11 EP - 24 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0148-17/ DO - 10.21136/CMJ.2018.0148-17 LA - en ID - 10_21136_CMJ_2018_0148_17 ER -
%0 Journal Article %A Cao, Chenchen %A Zhang, Li %A Guo, Wenbin %T On $\sigma $-permutably embedded subgroups of finite groups %J Czechoslovak Mathematical Journal %D 2019 %P 11-24 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0148-17/ %R 10.21136/CMJ.2018.0148-17 %G en %F 10_21136_CMJ_2018_0148_17
Cao, Chenchen; Zhang, Li; Guo, Wenbin. On $\sigma $-permutably embedded subgroups of finite groups. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 11-24. doi: 10.21136/CMJ.2018.0148-17
Cité par Sources :