On $\sigma $-permutably embedded subgroups of finite groups
Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 11-24.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\sigma =\{\sigma _i\colon i\in I\}$ be some partition of the set of all primes $\mathbb {P}$, $G$ be a finite group and $\sigma (G)=\{\sigma _i\colon \sigma _i\cap \pi (G)\neq \emptyset \}$. A set $\mathcal {H}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every non-identity member of $\mathcal {H}$ is a Hall $\sigma _i$-subgroup of $G$ and $\mathcal {H}$ contains exactly one Hall $\sigma _i$-subgroup of $G$ for every $\sigma _i\in \sigma (G)$. $G$ is said to be $\sigma $-full if $G$ possesses a complete Hall $\sigma $-set. A subgroup $H$ of $G$ is $\sigma $-permutable in $G$ if $G$ possesses a complete Hall $\sigma $-set $\mathcal {H}$ such that $HA^x$= $A^xH$ for all $A\in \mathcal {H}$ and all $x\in G$. A subgroup $H$ of $G$ is $\sigma $-permutably embedded in $G$ if $H$ is $\sigma $-full and for every $\sigma _i\in \sigma (H)$, every Hall $\sigma _i$-subgroup of $H$ is also a Hall $\sigma _i$-subgroup of some $\sigma $-permutable subgroup of $G$. \endgraf By using the $\sigma $-permutably embedded subgroups, we establish some new criteria for a group $G$ to be soluble and supersoluble, and also give the conditions under which a normal subgroup of $G$ is hypercyclically embedded. Some known results are generalized.
DOI : 10.21136/CMJ.2018.0148-17
Classification : 20D10, 20D20, 20D35
Keywords: finite group; $\sigma $-subnormal subgroup; $\sigma $-permutably embedded subgroup; \hbox {$\sigma $-soluble} group; supersoluble group
@article{10_21136_CMJ_2018_0148_17,
     author = {Cao, Chenchen and Zhang, Li and Guo, Wenbin},
     title = {On $\sigma $-permutably embedded subgroups of finite groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {11--24},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.21136/CMJ.2018.0148-17},
     mrnumber = {3923570},
     zbl = {07088765},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0148-17/}
}
TY  - JOUR
AU  - Cao, Chenchen
AU  - Zhang, Li
AU  - Guo, Wenbin
TI  - On $\sigma $-permutably embedded subgroups of finite groups
JO  - Czechoslovak Mathematical Journal
PY  - 2019
SP  - 11
EP  - 24
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0148-17/
DO  - 10.21136/CMJ.2018.0148-17
LA  - en
ID  - 10_21136_CMJ_2018_0148_17
ER  - 
%0 Journal Article
%A Cao, Chenchen
%A Zhang, Li
%A Guo, Wenbin
%T On $\sigma $-permutably embedded subgroups of finite groups
%J Czechoslovak Mathematical Journal
%D 2019
%P 11-24
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0148-17/
%R 10.21136/CMJ.2018.0148-17
%G en
%F 10_21136_CMJ_2018_0148_17
Cao, Chenchen; Zhang, Li; Guo, Wenbin. On $\sigma $-permutably embedded subgroups of finite groups. Czechoslovak Mathematical Journal, Tome 69 (2019) no. 1, pp. 11-24. doi : 10.21136/CMJ.2018.0148-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0148-17/

Cité par Sources :