Keywords: character degree graph; irreducible character; characteristically simple group; complex group algebra
@article{10_21136_CMJ_2018_0134_17,
author = {Khademi, Maryam and Khosravi, Behrooz},
title = {Recognition of characteristically simple group $A_5\times A_5$ by character degree graph and order},
journal = {Czechoslovak Mathematical Journal},
pages = {1149--1157},
year = {2018},
volume = {68},
number = {4},
doi = {10.21136/CMJ.2018.0134-17},
mrnumber = {3881904},
zbl = {07031705},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0134-17/}
}
TY - JOUR AU - Khademi, Maryam AU - Khosravi, Behrooz TI - Recognition of characteristically simple group $A_5\times A_5$ by character degree graph and order JO - Czechoslovak Mathematical Journal PY - 2018 SP - 1149 EP - 1157 VL - 68 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0134-17/ DO - 10.21136/CMJ.2018.0134-17 LA - en ID - 10_21136_CMJ_2018_0134_17 ER -
%0 Journal Article %A Khademi, Maryam %A Khosravi, Behrooz %T Recognition of characteristically simple group $A_5\times A_5$ by character degree graph and order %J Czechoslovak Mathematical Journal %D 2018 %P 1149-1157 %V 68 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0134-17/ %R 10.21136/CMJ.2018.0134-17 %G en %F 10_21136_CMJ_2018_0134_17
Khademi, Maryam; Khosravi, Behrooz. Recognition of characteristically simple group $A_5\times A_5$ by character degree graph and order. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1149-1157. doi: 10.21136/CMJ.2018.0134-17
[1] Brauer, R.: Representations of finite groups. Lectures on Modern Mathematics, Vol. I Wiley, New York (1963), 133-175. | MR | JFM
[2] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. Clarendon Press, Oxford (1985). | MR | JFM
[3] Dade, E. C.: Deux groupes finis distincts ayant la môme algêbre de groupe sur tout corps. Math. Z. 119 (1971), 345-348 French. | DOI | MR | JFM
[4] Holt, D. F., Plesken, W.: Perfect Groups. Oxford Mathematical Monographs, Clarendon Press, Oxford (1989). | MR | JFM
[5] Huppert, B.: Character Theory of Finite Groups. De Gruyter Expositions in Mathematics 25, Walter de Gruyter, Berlin (1998). | DOI | MR | JFM
[6] Isaacs, I. M.: Character Theory of Finite Groups. Pure and Applied Mathematics 69, Academic Press, New York (1976). | DOI | MR | JFM
[7] Isaacs, I. M.: Finite Group Theory. Graduate Studies in Mathematics 92, American Mathematical Society, Providence (2008). | DOI | MR | JFM
[8] Jones, M. R.: Some inequalities for the multiplicator of finite group. Proc. Am. Math. Soc. 39 (1973), 450-456. | DOI | MR | JFM
[9] Khosravi, B., Khosravi, B., Khosravi, B.: Recognition of $ PSL(2, p)$ by order and some information on its character degrees where $p$ is a prime. Monatsh. Math. 175 (2014), 277-282. | DOI | MR | JFM
[10] Khosravi, B., Khosravi, B., Khosravi, B.: Some extensions of $ PSL(2,p^2)$ are uniquely determined by their complex group algebras. Commun. Algebra 43 (2015), 3330-3341. | DOI | MR | JFM
[11] Khosravi, B., Khosravi, B., Khosravi, B.: A new characterization for some extensions of $ PSL(2,q)$ for some $q$ by some character degrees. Proc. Indian Acad. Sci., Math. Sci. 126 (2016), 49-59. | DOI | MR | JFM
[12] Khosravi, B., Khosravi, B., Khosravi, B., Momen, Z.: Recognition by character degree graph and order of the simple groups of order less than 6000. Miskolc Math. Notes 15 (2014), 537-544. | DOI | MR | JFM
[13] Khosravi, B., Khosravi, B., Khosravi, B., Momen, Z.: A new characterization for the simple group $ PSL(2, p^2)$ by order and some character degrees. Czech. Math. J. 64 (2015), 271-280. | DOI | MR | JFM
[14] Khosravi, B., Khosravi, B., Khosravi, B., Momen, Z.: Recognition of the simple group $ PSL(2,p^2)$ by character degree graph and order. Monatsh. Math. 178 (2015), 251-257. | DOI | MR | JFM
[15] Khosravi, B., Khosravi, B., Khosravi, B., Momen, Z.: Recognition of some simple groups by character degree graph and order. Math. Rep., Buchar. 18 (68) (2016), 51-61. | MR | JFM
[16] Kimmerle, W.: Group rings of finite simple groups. Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 261-278. | MR | JFM
[17] Lewis, M. L.: An overview of graphs associated with character degrees and conjugacy class sizes in finite groups. Rocky Mt. J. Math. 38 (2008), 175-211. | DOI | MR | JFM
[18] Manz, O., Staszewski, R., Willems, W.: On the number of components of a graph related to character degrees. Proc. Am. Math. Soc. 103 (1988), 31-37. | DOI | MR | JFM
[19] Nagl, M.: Über das Isomorphieproblem von Gruppenalgebren endlicher einfacher Gruppen. Diplomarbeit. Universität Stuttgart (2008), German.
[20] Nagl, M.: Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra. Stuttgarter Mathematische Berichte 2011 Universität Stuttgart. Fachbereich Mathematik, Stuttgart (2011), 18, Preprint ID 2011-007. Avaible at http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-007.pdf German.
[21] Tong-Viet, H. P.: Symmetric groups are determined by their character degrees. J. Algebra 334 (2011), 275-284. | DOI | MR | JFM
[22] Tong-Viet, H. P.: Alternating and sporadic simple groups are determined by their character degrees. Algebr. Represent. Theory 15 (2012), 379-389. | DOI | MR | JFM
[23] Tong-Viet, H. P.: Simple classical groups of Lie type are determined by their character degrees. J. Algebra 357 (2012), 61-68. | DOI | MR | JFM
[24] Tong-Viet, H. P.: Simple exceptional groups of Lie type are determined by their character degrees. Monatsh. Math. 166 (2012), 559-577. | DOI | MR | JFM
[25] White, D. L.: Degree graphs of simple groups. Rocky Mt. J. Math. 39 (2009), 1713-1739. | DOI | MR | JFM
[26] Xu, H., Chen, G., Yan, Y.: A new characterization of simple $K_3$-groups by their orders and large degrees of their irreducible characters. Commun. Algebra 42 (2014), 5374-5380. | DOI | MR | JFM
[27] Xu, H., Yan, Y., Chen, G.: A new characterization of Mathieu-groups by the order and one irreducible character degree. J. Inequal. Appl. Paper No. 209 (2013), 6 pages \99999DOI99999 10.1186/1029-242X-2013-209 \goodbreak. | MR | JFM
Cité par Sources :