Keywords: automorphism group; representation ring; weak Hopf algebra
@article{10_21136_CMJ_2018_0131_17,
author = {Su, Dong and Yang, Shilin},
title = {Automorphism group of representation ring of the weak {Hopf} algebra $\widetilde {H_8}$},
journal = {Czechoslovak Mathematical Journal},
pages = {1131--1148},
year = {2018},
volume = {68},
number = {4},
doi = {10.21136/CMJ.2018.0131-17},
mrnumber = {3881903},
zbl = {07031704},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0131-17/}
}
TY - JOUR
AU - Su, Dong
AU - Yang, Shilin
TI - Automorphism group of representation ring of the weak Hopf algebra $\widetilde {H_8}$
JO - Czechoslovak Mathematical Journal
PY - 2018
SP - 1131
EP - 1148
VL - 68
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0131-17/
DO - 10.21136/CMJ.2018.0131-17
LA - en
ID - 10_21136_CMJ_2018_0131_17
ER -
%0 Journal Article
%A Su, Dong
%A Yang, Shilin
%T Automorphism group of representation ring of the weak Hopf algebra $\widetilde {H_8}$
%J Czechoslovak Mathematical Journal
%D 2018
%P 1131-1148
%V 68
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0131-17/
%R 10.21136/CMJ.2018.0131-17
%G en
%F 10_21136_CMJ_2018_0131_17
Su, Dong; Yang, Shilin. Automorphism group of representation ring of the weak Hopf algebra $\widetilde {H_8}$. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1131-1148. doi: 10.21136/CMJ.2018.0131-17
[1] Aizawa, N., Isaac, P. S.: Weak Hopf algebras corresponding to $U_q[sl_n]$. J. Math. Phys. 44 (2003), 5250-5267. | DOI | MR | JFM
[2] Alperin, R. C.: Homology of the group of automorphisms of $k[x, y]$. J. Pure Appl. Algebra 15 (1979), 109-115. | DOI | MR | JFM
[3] Chen, H.-X.: The coalgebra automorphism group of Hopf algebra $k_q[x,x^{-1},y]$. J. Pure Appl. Algebra 217 (2013), 1870-1887. | DOI | MR | JFM
[4] Chen, H., Oystaeyen, F. Van, Zhang, Y.: The Green rings of Taft algebras. Proc. Am. Math. Soc. 142 (2014), 765-775. | DOI | MR | JFM
[5] Cheng, D.: The structure of weak quantum groups corresponding to Sweedler algebra. JP J. Algebra Number Theory Appl. 16 (2010), 89-99. | MR | JFM
[6] Cheng, D., Li, F.: The structure of weak Hopf algebras corresponding to $U_q( sl_2)$. Commun. Algebra 37 (2009), 729-742. | DOI | MR | JFM
[7] Dicks, W.: Automorphisms of the polynomial ring in two variables. Publ. Secc. Mat. Univ. Autòn. Barc. 27 (1983), 155-162. | DOI | MR | JFM
[8] Drensky, V., Yu, J.-T.: Automorphisms of polynomial algebras and Dirichlet series. J. Algebra 321 (2009), 292-302. | DOI | MR | JFM
[9] Han, J., Su, Y.: Automorphism groups of Witt algebras. Available at ArXiv 1502.0144v1 [math.QA].
[10] Jia, T., Zhao, R., Li, L.: Automorphism group of Green ring of Sweedler Hopf algebra. Front. Math. China 11 (2016), 921-932. | DOI | MR | JFM
[11] Li, F.: Weak Hopf algebras and some new solutions of the quantum Yang-Baxter equation. J. Algebra 208 (1998), 72-100. | DOI | MR | JFM
[12] Li, L., Zhang, Y.: The Green rings of the generalized Taft Hopf algebras. Hopf Algebras and Tensor Categories Contemporary Mathematics 585, Proc. of the International Conf., University of Almería, Almería, Amer. Math. Soc., Providence N. Andruskiewitsch et al. (2013), 275-288. | DOI | MR | JFM
[13] Masuoka, A.: Semisimple Hopf algebras of dimension $6,8$. Isr. J. Math. 92 (1995), 361-373. | DOI | MR | JFM
[14] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Conference on Hopf algebras and Their Actions on Rings, Chicago, 1992, CBMS Regional Conference Series in Mathematics 82, AMS, Providence (1993). | DOI | MR | JFM
[15] Ştefan, D.: Hopf algebras of low dimension. J. Algebra 211 (1999), 343-361. | DOI | MR | JFM
[16] Sweedler, M. E.: Hopf Algebras. Mathematics Lecture Note Series, W. A. Benjamin, New York (1969). | MR | JFM
[17] Kulk, W. van der: On polynomial rings in two variables. Nieuw Arch. Wiskd., III. Ser. 1 (1953), 33-41. | MR | JFM
[18] Yang, S.: Representations of simple pointed Hopf algebras. J. Algebra Appl. 3 (2004), 91-104. | DOI | MR | JFM
[19] Yang, S.: Weak Hopf algebras corresponding to Cartan matrices. J. Math. Phys. 46 (2005), 073502, 18 pages. | DOI | MR | JFM
[20] Yu, J.-T.: Recognizing automorphisms of polynomial algebras. Mat. Contemp. 14 (1998), 215-225. | MR | JFM
[21] Zhao, K.: Automophisms of the binary polynomial algebras on integer rings. Chinese Ann. Math. Ser. A 4 (1995), 448-494 Chinese.
Cité par Sources :