Keywords: discrete logarithm; Hensel lift; group extension
@article{10_21136_CMJ_2018_0128_17,
author = {Gadiyar, Gopalakrishna Hejmadi and Padma, Ramanathan},
title = {The discrete logarithm problem over prime fields: the safe prime case. {The} {Smart} attack, non-canonical lifts and logarithmic derivatives},
journal = {Czechoslovak Mathematical Journal},
pages = {1115--1124},
year = {2018},
volume = {68},
number = {4},
doi = {10.21136/CMJ.2018.0128-17},
mrnumber = {3881901},
zbl = {07031702},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0128-17/}
}
TY - JOUR AU - Gadiyar, Gopalakrishna Hejmadi AU - Padma, Ramanathan TI - The discrete logarithm problem over prime fields: the safe prime case. The Smart attack, non-canonical lifts and logarithmic derivatives JO - Czechoslovak Mathematical Journal PY - 2018 SP - 1115 EP - 1124 VL - 68 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0128-17/ DO - 10.21136/CMJ.2018.0128-17 LA - en ID - 10_21136_CMJ_2018_0128_17 ER -
%0 Journal Article %A Gadiyar, Gopalakrishna Hejmadi %A Padma, Ramanathan %T The discrete logarithm problem over prime fields: the safe prime case. The Smart attack, non-canonical lifts and logarithmic derivatives %J Czechoslovak Mathematical Journal %D 2018 %P 1115-1124 %V 68 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0128-17/ %R 10.21136/CMJ.2018.0128-17 %G en %F 10_21136_CMJ_2018_0128_17
Gadiyar, Gopalakrishna Hejmadi; Padma, Ramanathan. The discrete logarithm problem over prime fields: the safe prime case. The Smart attack, non-canonical lifts and logarithmic derivatives. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1115-1124. doi: 10.21136/CMJ.2018.0128-17
[1] Bach, E.: Discrete Logarithms and Factoring. University of California, Computer Science Division, Berkeley (1984).
[2] Buium, A.: Arithmetic analogues of derivations. J. Algebra 198 (1997), 290-299. | DOI | MR | JFM
[3] Cameron, P. J., Preece, D. A.: Primitive Lambda-Roots. Available at\ https://cameroncounts.files.wordpress.com/2014/01/plr1.pdf (2014).
[4] Carmichael, R. D.: The Theory of Numbers. Wiley & Sons, New York (1914),\99999JFM99999 45.0283.10. | MR
[5] Diffie, W., Hellman, M. E.: New directions in cryptography. IEEE Trans. Inf. Theory 22 (1976), 644-654. | DOI | MR | JFM
[6] Goldwasser, S.: New directions in cryptography: twenty some years later (or cryptography and complexity theory: a match made in heaven). Proc. of the 38th Annual IEEE Symposium on Foundations of Computer Science, Foundations of Computer Science (1997), 314-324. | DOI
[7] Gadiyar, H. Gopalakrishna, Padma, R.: The discrete logarithm problem over prime fields can be transformed to a linear multivariable Chinese remainder theorem. Available at ArXiv: 1608.07032v1 [math.NT] (2016). | MR
[8] Gadiyar, H. Gopalkrishna, Maini, K. M. S Sangeeta, Padma, R.: Cryptography, connections, cocycles and crystals: a $p$-adic exploration of the discrete logarithm problem. Progress in Cryptology---INDOCRYPT 2004, 5th International Conf. on Cryptology in India, Chennai, 2004, Lecture Notes in Comput. Sci. 3348 Springer, Berlin A. Canteaut et al. (2004), 305-314. | DOI | MR | JFM
[9] Hilbert, D.: The Theory of Algebraic Number Fields. Springer, Berlin (1998). | DOI | MR | JFM
[10] Kawada, Y.: On the derivations in number fields. Ann. Math. (2) 54 (1951), 302-314. | DOI | MR | JFM
[11] Koblitz, N.: A Course in Number Theory and Cryptography. Graduate Texts in Mathematics 114, Springer, New York (1994). | DOI | MR | JFM
[12] Kontsevich, M.: On poly(ana)logs. I. (With an appendix by Maxim Kontsevich: The $1\frac{1}{2}$-logarithm). Compositio Math. (2002), 130 161-210, 211-214. | DOI | MR | JFM
[13] Kumanduri, R., Romero, C.: Number Theory with Computer Applications. Prentice Hall, Upper Saddle River (1998). | JFM
[14] Lerch, M.: Zur Theorie des Fermatschen Quotienten $\frac{{a^{p-1}-1}}p=q(a)$. Math. Ann. 60 (1905), 471-490 German \99999JFM99999 36.0266.03. | DOI | MR
[15] McCurley, K. S.: The discrete logarithm problem. Cryptology and Computational Number Theory Lect. Notes AMS Short Course 1989, Proc. Symp. Appl. Math. 42 (1990), 49-74. | DOI | MR | JFM
[16] Riesel, H.: Some soluble cases of the discrete logarithm problem. BIT 28 (1988), 839-851. | DOI | MR | JFM
[17] Robert, A. M.: A Course in $p$-adic Analysis. Graduate Texts in Mathematics 198, Springer, New York (2000). | DOI | MR | JFM
[18] Satoh, T., Araki, K.: Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves. Comment. Math. Univ. St. Pauli 47 (1998), 81-92. | MR | JFM
[19] Semaev, I. A.: Evaluation of discrete logarithms in a group of $p$-torsion points of an elliptic curve in characteristic $p$. Math. Comput. 67 (1998), 353-356. | DOI | MR | JFM
[20] Silverman, J. H.: Lifting and elliptic curve discrete logarithms. Selected Areas in Cryptography. Proc. of 15th International Workshop on Selected Areas in Cryptography, Sackville, 2008, Lecture Notes in Computer Science 5381 Springer, Berlin R. M. Avanzi et al. (2009), 82-102. | DOI | MR | JFM
[21] Smart, N. P.: The discrete logarithm problem on elliptic curves of trace one. J. Cryptology 12 (1999), 193-196. | DOI | MR | JFM
[22] Teichmüller, O.: Diskret bewertete perfekte Körper mit unvollkommenem Restklassenkörper. J. Reine Angew. Math. 176 (1936), 141-152 German. | DOI | MR | JFM
[23] Teichmüller, O.: Über die Struktur diskret bewerteter perfekter Körper. Nachr. Ges. Wiss. Göttingen, math.-phys. Kl., FG 1, Neue Folge 1 (1936), 151-161 German \99999JFM99999 62.0110.01.
[24] Washington, L. C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics 83, Springer, New York (1997). | DOI | MR | JFM
Cité par Sources :