Keywords: DS (determined by spectrum) graph; Schläfli graph; multicone graph; adjacency spectrum; Laplacian spectrum; Paley graph of order 17
@article{10_21136_CMJ_2018_0098_17,
author = {Abdian, Ali Zeydi and Mirafzal, S. Morteza},
title = {The spectral determinations of the connected multicone graphs $ K_w\bigtriangledown mP_{17} $ and $ K_w\bigtriangledown mS $},
journal = {Czechoslovak Mathematical Journal},
pages = {1091--1104},
year = {2018},
volume = {68},
number = {4},
doi = {10.21136/CMJ.2018.0098-17},
mrnumber = {3881899},
zbl = {07031700},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0098-17/}
}
TY - JOUR
AU - Abdian, Ali Zeydi
AU - Mirafzal, S. Morteza
TI - The spectral determinations of the connected multicone graphs $ K_w\bigtriangledown mP_{17} $ and $ K_w\bigtriangledown mS $
JO - Czechoslovak Mathematical Journal
PY - 2018
SP - 1091
EP - 1104
VL - 68
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0098-17/
DO - 10.21136/CMJ.2018.0098-17
LA - en
ID - 10_21136_CMJ_2018_0098_17
ER -
%0 Journal Article
%A Abdian, Ali Zeydi
%A Mirafzal, S. Morteza
%T The spectral determinations of the connected multicone graphs $ K_w\bigtriangledown mP_{17} $ and $ K_w\bigtriangledown mS $
%J Czechoslovak Mathematical Journal
%D 2018
%P 1091-1104
%V 68
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0098-17/
%R 10.21136/CMJ.2018.0098-17
%G en
%F 10_21136_CMJ_2018_0098_17
Abdian, Ali Zeydi; Mirafzal, S. Morteza. The spectral determinations of the connected multicone graphs $ K_w\bigtriangledown mP_{17} $ and $ K_w\bigtriangledown mS $. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1091-1104. doi: 10.21136/CMJ.2018.0098-17
[1] Abdian, A. Z.: Graphs which are determined by their spectrum. Konuralp J. Math. 4 (2016), 34-41. | MR | JFM
[2] Abdian, A. Z.: Two classes of multicone graphs determined by their spectra. J. Math. Ext. 10 (2016), 111-121. | MR
[3] Abdian, A. Z.: Graphs cospectral with multicone graphs $ K_w\bigtriangledown L(P) $. TWMS. J. App. Eng. Math. 7 (2017), 181-187. | MR
[4] Abdian, A. Z.: The spectral determinations of the multicone graphs $K_w\bigtriangledown P$. Avaible at (2017). | arXiv | MR
[5] Abdian, A. Z., Mirafzal, S. M.: On new classes of multicone graphs determined by their spectrums. Alg. Struc. Appl. 2 (2015), 23-34. | MR
[6] Abdian, A. Z., Mirafzal, S. M.: The spectral characterizations of the connected multicone graphs $K_w\bigtriangledown LHS$ and $K_w\bigtriangledown LGQ(3,9) $. Discrete Math. Algorithms Appl. 10 (2018), Article ID 1850019. | DOI | MR | JFM
[7] Abdollahi, A., Janbaz, S., Oboudi, M. R.: Graphs cospectral with a friendship graph or its complement. Trans. Comb. 2 (2013), 37-52. | MR | JFM
[8] Bapat, R. B.: Graphs and Matrices. Universitext, Springer, London; Hindustan Book Agency, New Delhi (2014). | DOI | MR | JFM
[9] Biggs, N.: Algebraic Graph Theory. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1994). | DOI | MR | JFM
[10] Boulet, R., Jouve, B.: The lollipop graph is determined by its spectrum. Electron. J. Comb. 15 (2008), Researh Paper 74, 43 pages. | MR | JFM
[11] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs. Universitext, Springer, New York (2012). | DOI | MR | JFM
[12] Cioabă, S. M., Haemers, W. H., Vermette, J. R., Wong, W.: The graphs with all but two eigenvalues equal to $\pm1$. J. Algebr. Comb. 41 (2015), 887-897. | DOI | MR | JFM
[13] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). | DOI | MR | JFM
[14] Das, K. C.: Proof of conjectures on adjacency eigenvalues of graphs. Discrete Math. 313 (2013), 19-25. | DOI | MR | JFM
[15] Doob, M., Haemers, W. H.: The complement of the path is determined by its spectrum. Linear Algebra Appl. 356 (2002), 57-65. | DOI | MR | JFM
[16] Günthard, H. H., Primas, H.: Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen. Helv. Chim. Acta. German 39 (1956), 1645-1653. | DOI
[17] Haemers, W. H., Liu, X., Zhang, Y.: Spectral characterizations of lollipop graphs. Linear Algebra Appl. 428 (2008), 2415-2423. | DOI | MR | JFM
[18] Knauer, U.: Algebraic Graph Theory. Morphisms, Monoids and Matrices. De Gruyter Studies in Mathematics 41, Walter de Gruyter, Berlin (2011). | DOI | MR | JFM
[19] Liu, Y., Sun, Y. Q.: On the second Laplacian spectral moment of a graph. Czech. Math. J. 60 (2010), 401-410. | DOI | MR | JFM
[20] Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197/198 (1994), 143-176. | DOI | MR | JFM
[21] Mirafzal, S. M., Abdian, A. Z.: Spectral characterization of new classes of multicone graphs. Stud. Univ. Babeş-Bolyai Math. 62 (2017), 275-286. | DOI | MR | JFM
[22] Peisert, W.: All self-complementary symmetric graphs. J. Algebra 240 (2001), 209-229. | DOI | MR | JFM
[23] Rowlinson, P.: The main eigenvalues of a graph: A survey. Appl. Anal. Discrete Math. 1 (2007), 445-471. | DOI | MR | JFM
[24] Dam, E. R. van: Nonregular graphs with three eigenvalues. J. Comb. Theory, Ser. B 73 (1998), 101-118. | DOI | MR | JFM
[25] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?. Linear Algebra Appl. 373 (2003), 241-272. | DOI | MR | JFM
[26] Dam, E. R. van, Haemers, W. H.: Developments on spectral characterizations of graphs. Discrete Math. 309 (2009), 576-586. | DOI | MR | JFM
[27] Wang, J., Belardo, F., Huang, Q., Borovićanin, B.: On the two largest $Q$-eigenvalues of graphs. Discrete Math. 310 (2010), 2858-2866. | DOI | MR | JFM
[28] Wang, W., Xu, C.: A sufficient condition for a family of graphs being determined by their generalized spectra. Eur. J. Comb. 27 (2006), 826-840. | DOI | MR | JFM
[29] Wang, J., Zhao, H., Huang, Q.: Spectral characterization of multicone graphs. Czech. Math. J. 62 (2012), 117-126. | DOI | MR | JFM
[30] West, D. B.: Introduction to Graph Theory. Prentice-Hall of India, New Delhi (2005). | MR | JFM
Cité par Sources :