On the Győry-Sárközy-Stewart conjecture in function fields
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1067-1077 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider function field analogues of the conjecture of Győry, Sárközy and Stewart (1996) on the greatest prime divisor of the product $(ab+1)(ac+1)(bc+1)$ for distinct positive integers $a$, $b$ and $c$. In particular, we show that, under some natural conditions on rational functions $F,G,H \in {\mathbb C}(X)$, the number of distinct zeros and poles of the shifted products $FH+1$ and $GH+1$ grows linearly with $\deg H$ if $\deg H \ge \max \{\deg F, \deg G\} $. We also obtain a version of this result for rational functions over a finite field.
We consider function field analogues of the conjecture of Győry, Sárközy and Stewart (1996) on the greatest prime divisor of the product $(ab+1)(ac+1)(bc+1)$ for distinct positive integers $a$, $b$ and $c$. In particular, we show that, under some natural conditions on rational functions $F,G,H \in {\mathbb C}(X)$, the number of distinct zeros and poles of the shifted products $FH+1$ and $GH+1$ grows linearly with $\deg H$ if $\deg H \ge \max \{\deg F, \deg G\} $. We also obtain a version of this result for rational functions over a finite field.
DOI : 10.21136/CMJ.2018.0085-17
Classification : 11R09, 11S05, 12E05
Keywords: shifted polynomial product; number of zeros
@article{10_21136_CMJ_2018_0085_17,
     author = {Shparlinski, Igor E.},
     title = {On the {Gy\H{o}ry-S\'ark\"ozy-Stewart} conjecture in function fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1067--1077},
     year = {2018},
     volume = {68},
     number = {4},
     doi = {10.21136/CMJ.2018.0085-17},
     mrnumber = {3881897},
     zbl = {07031698},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0085-17/}
}
TY  - JOUR
AU  - Shparlinski, Igor E.
TI  - On the Győry-Sárközy-Stewart conjecture in function fields
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 1067
EP  - 1077
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0085-17/
DO  - 10.21136/CMJ.2018.0085-17
LA  - en
ID  - 10_21136_CMJ_2018_0085_17
ER  - 
%0 Journal Article
%A Shparlinski, Igor E.
%T On the Győry-Sárközy-Stewart conjecture in function fields
%J Czechoslovak Mathematical Journal
%D 2018
%P 1067-1077
%V 68
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0085-17/
%R 10.21136/CMJ.2018.0085-17
%G en
%F 10_21136_CMJ_2018_0085_17
Shparlinski, Igor E. On the Győry-Sárközy-Stewart conjecture in function fields. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1067-1077. doi: 10.21136/CMJ.2018.0085-17

[1] Amoroso, F., Sombra, M., Zannier, U.: Unlikely intersections and multiple roots of sparse polynomials. Math. Z. 287 (2017), 1065-1081. | DOI | MR | JFM

[2] Bernstein, D. J.: Sharper $ABC$-based bounds for congruent polynomials. J. Th{é}or. Nombres Bordx. 17 (2005), 721-725. | DOI | MR | JFM

[3] Bombieri, E., Habegger, P., Masser, D., Zannier, U.: A note on Maurin's theorem. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 21 (2010), 251-260. | DOI | MR | JFM

[4] Bombieri, E., Masser, D., Zannier, U.: Intersecting a curve with algebraic subgroups of multiplicative groups. Int. Math. Res. Not. 20 (1999), 1119-1140. | DOI | MR | JFM

[5] Bombieri, E., Masser, D., Zannier, U.: On unlikely intersections of complex varieties with tori. Acta Arith. 133 (2008), 309-323. | DOI | MR | JFM

[6] Bugeaud, Y., Luca, F.: A quantitative lower bound for the greatest prime factor of $(ab+1)(bc+1)(ca+1)$. Acta Arith. 114 (2004), 275-294. | DOI | MR | JFM

[7] Corvaja, P., Zannier, U.: On the greatest prime factor of $(ab+1)(ac+1)$. Proc. Am. Math. Soc. 131 (2003), 1705-1709. | DOI | MR | JFM

[8] Corvaja, P., Zannier, U.: Some cases of Vojta's conjecture on integral points over function fields. J. Algebr. Geom. 17 (2008), 295-333. | DOI | MR | JFM

[9] Corvaja, P., Zannier, U.: An $abcd$ theorem over function fields and applications. Bull. Soc. Math. Fr. 139 (2011), 437-454. | DOI | MR | JFM

[10] Corvaja, P., Zannier, U.: Greatest common divisors of $u-1$, $v-1$ in positive characteristic and rational points on curves over finite fields. J. Eur. Math. Soc. (JEMS) 15 (2013), 1927-1942. | DOI | MR | JFM

[11] Győry, K., Sárközy, A.: On prime factors of integers of the form $(ab+1)(bc+1)(ca+1)$. Acta Arith. 79 (1997), 163-171. | DOI | MR | JFM

[12] Győry, K., Sárközy, A., Stewart, C. L.: On the number of prime factors of integers of the form $ab+1$. Acta Arith. 74 (1996), 365-385. | DOI | MR | JFM

[13] Habegger, P., Pila, J.: Some unlikely intersections beyond André-Oort. Compos. Math. 148 (2012), 1-27. | DOI | MR | JFM

[14] Hernández, S., Luca, F.: On the largest prime factor of $(ab+1)(ac+1)(bc+1)$. Bol. Soc. Mat. Mex., III. Ser. 9 (2003), 235-244. | MR | JFM

[15] Mason, R. C.: Diophantine Equations Over Function Fields. London Mathematical Society Lecture Note Series 96, Cambridge University Press, Cambridge (1984). | DOI | MR | JFM

[16] Maurin, G.: Équations multiplicatives sur les sous-variétés des tores. Int. Math. Res. Not. 2011 (2011), Article no. 23, 5259-5366 French. | DOI | MR | JFM

[17] Ostafe, A.: On some extensions of the Ailon-Rudnick theorem. Monatsh. Math. 181 (2016), 451-471. | DOI | MR | JFM

[18] Silverman, J. H.: The $S$-unit equation over function fields. Math. Proc. Camb. Philos. Soc. 95 (1984), 3-4. | DOI | MR | JFM

[19] Stewart, C. L., Tijdeman, R.: On the greatest prime factor of $(ab+1)(ac+1)(bc+1)$. Acta Arith. 79 (1997), 93-101. | DOI | MR | JFM

[20] Stothers, W. W.: Polynomial identities and Hauptmoduln. Q. J. Math., Oxf. II. Ser. 32 (1981), 349-370. | DOI | MR | JFM

[21] Zannier, U.: Some problems of unlikely intersections in arithmetic and geometry. Annals of Mathematics Studies 181, Princeton University Press, Princeton (2012). | DOI | MR | JFM

Cité par Sources :