Possible isolation number of a matrix over nonnegative integers
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1055-1066
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mathbb Z_+$ be the semiring of all nonnegative integers and $A$ an $m\times n$ matrix over $\mathbb Z_+$. The rank of $A$ is the smallest $k$ such that $A$ can be factored as an $m\times k$ matrix times a $k\times n$ matrix. The isolation number of $A$ is the maximum number of nonzero entries in $A$ such that no two are in any row or any column, and no two are in a $2\times 2$ submatrix of all nonzero entries. We have that the isolation number of $A$ is a lower bound of the rank of $A$. For $A$ with isolation number $k$, we investigate the possible values of the rank of $A$ and the Boolean rank of the support of $A$. So we obtain that the isolation number and the Boolean rank of the support of a given matrix are the same if and only if the isolation number is $1$ or $2$ only. We also determine a special type of $m \times n$ matrices whose isolation number is $m$. That is, those matrices are permutationally equivalent to a matrix $A$ whose support contains a submatrix of a sum of the identity matrix and a tournament matrix.
DOI :
10.21136/CMJ.2018.0068-17
Classification :
15A03, 15A23, 15B34
Keywords: rank; Boolean rank; isolated entry; isolation number
Keywords: rank; Boolean rank; isolated entry; isolation number
@article{10_21136_CMJ_2018_0068_17,
author = {Beasley, LeRoy B. and Jun, Young Bae and Song, Seok-Zun},
title = {Possible isolation number of a matrix over nonnegative integers},
journal = {Czechoslovak Mathematical Journal},
pages = {1055--1066},
publisher = {mathdoc},
volume = {68},
number = {4},
year = {2018},
doi = {10.21136/CMJ.2018.0068-17},
mrnumber = {3881896},
zbl = {07031697},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0068-17/}
}
TY - JOUR AU - Beasley, LeRoy B. AU - Jun, Young Bae AU - Song, Seok-Zun TI - Possible isolation number of a matrix over nonnegative integers JO - Czechoslovak Mathematical Journal PY - 2018 SP - 1055 EP - 1066 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0068-17/ DO - 10.21136/CMJ.2018.0068-17 LA - en ID - 10_21136_CMJ_2018_0068_17 ER -
%0 Journal Article %A Beasley, LeRoy B. %A Jun, Young Bae %A Song, Seok-Zun %T Possible isolation number of a matrix over nonnegative integers %J Czechoslovak Mathematical Journal %D 2018 %P 1055-1066 %V 68 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0068-17/ %R 10.21136/CMJ.2018.0068-17 %G en %F 10_21136_CMJ_2018_0068_17
Beasley, LeRoy B.; Jun, Young Bae; Song, Seok-Zun. Possible isolation number of a matrix over nonnegative integers. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1055-1066. doi: 10.21136/CMJ.2018.0068-17
Cité par Sources :