On some new sharp estimates in analytic Herz-type function spaces in tubular domains over symmetric cones
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1033-1050
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We obtain new sharp embedding theorems for mixed-norm Herz-type analytic spaces in tubular domains over symmetric cones. These results enlarge the list of recent sharp theorems in analytic spaces obtained by Nana and Sehba (2015).
We obtain new sharp embedding theorems for mixed-norm Herz-type analytic spaces in tubular domains over symmetric cones. These results enlarge the list of recent sharp theorems in analytic spaces obtained by Nana and Sehba (2015).
DOI : 10.21136/CMJ.2018.0059-17
Classification : 42B15, 42B30
Keywords: analytic function; tubular domain; embedding theorem
@article{10_21136_CMJ_2018_0059_17,
     author = {Shamoyan, Romi F. and Mihi\'c, Olivera},
     title = {On some new sharp estimates in analytic {Herz-type} function spaces in tubular domains over symmetric cones},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1033--1050},
     year = {2018},
     volume = {68},
     number = {4},
     doi = {10.21136/CMJ.2018.0059-17},
     mrnumber = {3881894},
     zbl = {07031695},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0059-17/}
}
TY  - JOUR
AU  - Shamoyan, Romi F.
AU  - Mihić, Olivera
TI  - On some new sharp estimates in analytic Herz-type function spaces in tubular domains over symmetric cones
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 1033
EP  - 1050
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0059-17/
DO  - 10.21136/CMJ.2018.0059-17
LA  - en
ID  - 10_21136_CMJ_2018_0059_17
ER  - 
%0 Journal Article
%A Shamoyan, Romi F.
%A Mihić, Olivera
%T On some new sharp estimates in analytic Herz-type function spaces in tubular domains over symmetric cones
%J Czechoslovak Mathematical Journal
%D 2018
%P 1033-1050
%V 68
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0059-17/
%R 10.21136/CMJ.2018.0059-17
%G en
%F 10_21136_CMJ_2018_0059_17
Shamoyan, Romi F.; Mihić, Olivera. On some new sharp estimates in analytic Herz-type function spaces in tubular domains over symmetric cones. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1033-1050. doi: 10.21136/CMJ.2018.0059-17

[1] Abate, A., Raissy, J., Saracco, A.: Toeplitz operators and Carleson measures in strongly pseudoconvex domains. J. Funct. Anal. 263 (2012), 3449-3491. | DOI | MR | JFM

[2] Abate, M., Saracco, A.: Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains. J. Lond. Math. Soc., II. Ser. 83 (2011), 587-605. | DOI | MR | JFM

[3] Bekolle, D., Bonami, A., Garrigos, G., Nana, C., Peloso, M., Ricci, F.: Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint. IMHOTEP J. Afr. Math. Pures Appl. 5 (2004), 75 pages. | MR | JFM

[4] Bekolle, D., Bonami, A., Garrigos, G., Ricci, F.: Littlewood-Paley decompositions related to symmetric cones and Bergman projections in tube domains. Proc. Lond. Math. Soc., III. Ser. 89 (2004), 317-360. | DOI | MR | JFM

[5] Bekolle, D., Bonami, A., Garrigos, G., Ricci, F., Sehba, B.: Analytic Besov spaces and Hardy-type inequalities in tube domains over symmetric cones. J. Reine Angew. Math. 647 (2010), 25-56. | DOI | MR | JFM

[6] Bekolle, D., Sehba, B., Tchoundja, E.: The Duren-Carleson theorem in tube domains over symmetric cones. Integral Equations Oper. Theory 86 (2016), 475-494. | DOI | MR | JFM

[7] Carleson, L.: Interpolations by bounded analytic functions and the corona problem. Ann. Math. 76 (1962), 547-559. | DOI | MR | JFM

[8] Cima, J. A., Mercer, P. R.: Composition operators between Bergman spaces on convex domains in $\mathbb{C}^n$. J. Oper. Theory 33 (1995), 363-369. | MR | JFM

[9] Cima, J. A., Wogen, W. R.: A Carleson measure theorem for the Bergman space on the ball. J. Oper. Theory 7 (1982), 157-165. | MR | JFM

[10] Duren, P. L.: Extension of a theorem of Carleson. Bull. Am. Math. Soc. 75 (1969), 143-146. | DOI | MR | JFM

[11] Gheorghe, L. G.: Interpolation of Besov spaces and applications. Matematiche 55 (2000), 29-42. | MR | JFM

[12] Hastings, W. W.: A Carleson measure theorem for Bergman spaces. Proc. Am. Math. Soc. 52 (1975), 237-241. | DOI | MR | JFM

[13] Kaptanoğlu, H. T.: Carleson measures for Besov spaces on the ball with applications. J. Funct. Anal. 250 (2007), 483-520. | DOI | MR | JFM

[14] Li, S., Shamoyan, R.: On some estimates and Carleson type measure for multifunctional holomorphic spaces in the unit ball. Bull. Sci. Math. 134 (2010), 144-154. | DOI | MR | JFM

[15] Luecking, D.: A technique for characterizing Carleson measures on Bergman spaces. Proc. Am. Math. Soc. 87 (1983), 656-660. | DOI | MR | JFM

[16] Nana, C., Sehba, B. F.: Carleson embeddings and two operators on Bergman spaces of tube domains over symmetric cones. Integral Equations Oper. Theory 83 (2015), 151-178. | DOI | MR | JFM

[17] Nana, C., Sehba, B.: Toeplitz and Hankel operators from Bergman to analytic Besov spaces of tube domains over symmetric cones. Avaible at | arXiv | MR

[18] Oleĭnik, V. L.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 9 (1978), 228-243. | DOI | JFM

[19] Oleĭnik, V. L., Pavlov, B. S.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 2 (1974), 135-142. | DOI | MR | JFM

[20] Sehba, B. F.: Hankel operators on Bergman spaces of tube domains over symmetric cones. Integral Equations Oper. Theory 62 (2008), 233-245. | DOI | MR | JFM

[21] Sehba, B. F.: Bergman-type operators in tubular domains over symmetric cones. Proc. Edinb. Math. Soc., II. Ser. 52 (2009), 529-544. | DOI | MR | JFM

[22] Shamoyan, R. F., Mihić, O. R.: On some new sharp embedding theorems in minimal and pseudoconvex domains. Czech. Math. J. 66 (2016), 527-546. | DOI | MR | JFM

[23] Yamaji, S.: Composition operators on the Bergman spaces of a minimal bounded homogeneous domain. Hiroshima Math. J. 43 (2013), 107-127. | DOI | MR | JFM

[24] Yamaji, S.: Positive Toeplitz operators on weighted Bergman spaces of a minimal bounded homogeneous domain. J. Math. Soc. Japan 64 (2013), 1101-1115. | DOI | MR | JFM

[25] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226, Springer, New York (2005). | DOI | MR | JFM

Cité par Sources :