Keywords: analytic function; tubular domain; embedding theorem
@article{10_21136_CMJ_2018_0059_17,
author = {Shamoyan, Romi F. and Mihi\'c, Olivera},
title = {On some new sharp estimates in analytic {Herz-type} function spaces in tubular domains over symmetric cones},
journal = {Czechoslovak Mathematical Journal},
pages = {1033--1050},
year = {2018},
volume = {68},
number = {4},
doi = {10.21136/CMJ.2018.0059-17},
mrnumber = {3881894},
zbl = {07031695},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0059-17/}
}
TY - JOUR AU - Shamoyan, Romi F. AU - Mihić, Olivera TI - On some new sharp estimates in analytic Herz-type function spaces in tubular domains over symmetric cones JO - Czechoslovak Mathematical Journal PY - 2018 SP - 1033 EP - 1050 VL - 68 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0059-17/ DO - 10.21136/CMJ.2018.0059-17 LA - en ID - 10_21136_CMJ_2018_0059_17 ER -
%0 Journal Article %A Shamoyan, Romi F. %A Mihić, Olivera %T On some new sharp estimates in analytic Herz-type function spaces in tubular domains over symmetric cones %J Czechoslovak Mathematical Journal %D 2018 %P 1033-1050 %V 68 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0059-17/ %R 10.21136/CMJ.2018.0059-17 %G en %F 10_21136_CMJ_2018_0059_17
Shamoyan, Romi F.; Mihić, Olivera. On some new sharp estimates in analytic Herz-type function spaces in tubular domains over symmetric cones. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1033-1050. doi: 10.21136/CMJ.2018.0059-17
[1] Abate, A., Raissy, J., Saracco, A.: Toeplitz operators and Carleson measures in strongly pseudoconvex domains. J. Funct. Anal. 263 (2012), 3449-3491. | DOI | MR | JFM
[2] Abate, M., Saracco, A.: Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains. J. Lond. Math. Soc., II. Ser. 83 (2011), 587-605. | DOI | MR | JFM
[3] Bekolle, D., Bonami, A., Garrigos, G., Nana, C., Peloso, M., Ricci, F.: Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint. IMHOTEP J. Afr. Math. Pures Appl. 5 (2004), 75 pages. | MR | JFM
[4] Bekolle, D., Bonami, A., Garrigos, G., Ricci, F.: Littlewood-Paley decompositions related to symmetric cones and Bergman projections in tube domains. Proc. Lond. Math. Soc., III. Ser. 89 (2004), 317-360. | DOI | MR | JFM
[5] Bekolle, D., Bonami, A., Garrigos, G., Ricci, F., Sehba, B.: Analytic Besov spaces and Hardy-type inequalities in tube domains over symmetric cones. J. Reine Angew. Math. 647 (2010), 25-56. | DOI | MR | JFM
[6] Bekolle, D., Sehba, B., Tchoundja, E.: The Duren-Carleson theorem in tube domains over symmetric cones. Integral Equations Oper. Theory 86 (2016), 475-494. | DOI | MR | JFM
[7] Carleson, L.: Interpolations by bounded analytic functions and the corona problem. Ann. Math. 76 (1962), 547-559. | DOI | MR | JFM
[8] Cima, J. A., Mercer, P. R.: Composition operators between Bergman spaces on convex domains in $\mathbb{C}^n$. J. Oper. Theory 33 (1995), 363-369. | MR | JFM
[9] Cima, J. A., Wogen, W. R.: A Carleson measure theorem for the Bergman space on the ball. J. Oper. Theory 7 (1982), 157-165. | MR | JFM
[10] Duren, P. L.: Extension of a theorem of Carleson. Bull. Am. Math. Soc. 75 (1969), 143-146. | DOI | MR | JFM
[11] Gheorghe, L. G.: Interpolation of Besov spaces and applications. Matematiche 55 (2000), 29-42. | MR | JFM
[12] Hastings, W. W.: A Carleson measure theorem for Bergman spaces. Proc. Am. Math. Soc. 52 (1975), 237-241. | DOI | MR | JFM
[13] Kaptanoğlu, H. T.: Carleson measures for Besov spaces on the ball with applications. J. Funct. Anal. 250 (2007), 483-520. | DOI | MR | JFM
[14] Li, S., Shamoyan, R.: On some estimates and Carleson type measure for multifunctional holomorphic spaces in the unit ball. Bull. Sci. Math. 134 (2010), 144-154. | DOI | MR | JFM
[15] Luecking, D.: A technique for characterizing Carleson measures on Bergman spaces. Proc. Am. Math. Soc. 87 (1983), 656-660. | DOI | MR | JFM
[16] Nana, C., Sehba, B. F.: Carleson embeddings and two operators on Bergman spaces of tube domains over symmetric cones. Integral Equations Oper. Theory 83 (2015), 151-178. | DOI | MR | JFM
[17] Nana, C., Sehba, B.: Toeplitz and Hankel operators from Bergman to analytic Besov spaces of tube domains over symmetric cones. Avaible at | arXiv | MR
[18] Oleĭnik, V. L.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 9 (1978), 228-243. | DOI | JFM
[19] Oleĭnik, V. L., Pavlov, B. S.: Embedding theorems for weighted classes of harmonic and analytic functions. J. Sov. Math. 2 (1974), 135-142. | DOI | MR | JFM
[20] Sehba, B. F.: Hankel operators on Bergman spaces of tube domains over symmetric cones. Integral Equations Oper. Theory 62 (2008), 233-245. | DOI | MR | JFM
[21] Sehba, B. F.: Bergman-type operators in tubular domains over symmetric cones. Proc. Edinb. Math. Soc., II. Ser. 52 (2009), 529-544. | DOI | MR | JFM
[22] Shamoyan, R. F., Mihić, O. R.: On some new sharp embedding theorems in minimal and pseudoconvex domains. Czech. Math. J. 66 (2016), 527-546. | DOI | MR | JFM
[23] Yamaji, S.: Composition operators on the Bergman spaces of a minimal bounded homogeneous domain. Hiroshima Math. J. 43 (2013), 107-127. | DOI | MR | JFM
[24] Yamaji, S.: Positive Toeplitz operators on weighted Bergman spaces of a minimal bounded homogeneous domain. J. Math. Soc. Japan 64 (2013), 1101-1115. | DOI | MR | JFM
[25] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226, Springer, New York (2005). | DOI | MR | JFM
Cité par Sources :