Zeros of a certain class of Gauss hypergeometric polynomials
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1021-1031
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that as $n\to \infty $, the zeros of the polynomial $$ _{2}{F}_{1}\left [ \begin {matrix} -n, \alpha n+1\\ \alpha n+2 \end {matrix} ; z\right ] $$ cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al.\ (1999--2001) to the case of a complex parameter $\alpha $ and partially proves a conjecture made by the authors in an earlier work.
We prove that as $n\to \infty $, the zeros of the polynomial $$ _{2}{F}_{1}\left [ \begin {matrix} -n, \alpha n+1\\ \alpha n+2 \end {matrix} ; z\right ] $$ cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al.\ (1999--2001) to the case of a complex parameter $\alpha $ and partially proves a conjecture made by the authors in an earlier work.
DOI : 10.21136/CMJ.2018.0055-17
Classification : 30C15, 33C05
Keywords: asymptotic zero-distribution; hypergeometric polynomial; saddle point method
@article{10_21136_CMJ_2018_0055_17,
     author = {Abathun, Addisalem and B{\o}gvad, Rikard},
     title = {Zeros of a certain class of {Gauss} hypergeometric polynomials},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1021--1031},
     year = {2018},
     volume = {68},
     number = {4},
     doi = {10.21136/CMJ.2018.0055-17},
     mrnumber = {3881893},
     zbl = {07031694},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0055-17/}
}
TY  - JOUR
AU  - Abathun, Addisalem
AU  - Bøgvad, Rikard
TI  - Zeros of a certain class of Gauss hypergeometric polynomials
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 1021
EP  - 1031
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0055-17/
DO  - 10.21136/CMJ.2018.0055-17
LA  - en
ID  - 10_21136_CMJ_2018_0055_17
ER  - 
%0 Journal Article
%A Abathun, Addisalem
%A Bøgvad, Rikard
%T Zeros of a certain class of Gauss hypergeometric polynomials
%J Czechoslovak Mathematical Journal
%D 2018
%P 1021-1031
%V 68
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0055-17/
%R 10.21136/CMJ.2018.0055-17
%G en
%F 10_21136_CMJ_2018_0055_17
Abathun, Addisalem; Bøgvad, Rikard. Zeros of a certain class of Gauss hypergeometric polynomials. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1021-1031. doi: 10.21136/CMJ.2018.0055-17

[1] Abathun, A., Bøgvad, R.: Asymptotic distribution of zeros of a certain class of hypergeometric polynomials. Comput. Methods Funct. Theory 16 (2016), 167-185. | DOI | MR | JFM

[2] Andrews, G. E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications 71, Cambridge University Press, Cambridge (1999). | DOI | MR | JFM

[3] Bleistein, N.: Mathematical Methods for Wave Phenomena. Computer Science and Applied Mathematics, Academic Press, Orlando (1984). | DOI | MR | JFM

[4] Boggs, K., Duren, P.: Zeros of hypergeometric functions. Comput. Methods Funct. Theory 1 (2001), 275-287. | DOI | MR | JFM

[5] Borcea, J., Bøgvad, R., Shapiro, B.: Homogenized spectral problems for exactly solvable operators: asymptotics of polynomial eigenfunctions. Publ. Res. Inst. Math. Sci. 45 (2009), 525-568 corrigendum ibid. 48 2012 229-233. | DOI | MR | JFM

[6] Bruijn, N. G. de: Asymptotic Methods in Analysis. Bibliotheca Mathematica 4, North-Holland Publishing, Amsterdam (1961). | MR | JFM

[7] Driver, K., Duren, P.: Asymptotic zero distribution of hypergeometric polynomials. Numer. Algorithms 21 (1999), 147-156. | DOI | MR | JFM

[8] Duren, P. L., Guillou, B. J.: Asymptotic properties of zeros of hypergeometric polynomials. J. Approximation Theory 111 (2001), 329-343. | DOI | MR | JFM

Cité par Sources :