Uniform convexity and associate spaces
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1011-1020
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that the associate space of a generalized Orlicz space $L^{\phi (\cdot )}$ is given by the conjugate modular $\phi ^*$ even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling $\Phi $-function is equivalent to a doubling $\Phi $-function. As a consequence, we conclude that $L^{\phi (\cdot )}$ is uniformly convex if $\phi $ and $\phi ^*$ are weakly doubling.
We prove that the associate space of a generalized Orlicz space $L^{\phi (\cdot )}$ is given by the conjugate modular $\phi ^*$ even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling $\Phi $-function is equivalent to a doubling $\Phi $-function. As a consequence, we conclude that $L^{\phi (\cdot )}$ is uniformly convex if $\phi $ and $\phi ^*$ are weakly doubling.
DOI : 10.21136/CMJ.2018.0054-17
Classification : 46A25, 46E30
Keywords: generalized Orlicz space; Musielak-Orlicz space; nonstandard growth; variable exponent; double phase; uniform convexity; associate space
@article{10_21136_CMJ_2018_0054_17,
     author = {Harjulehto, Petteri and H\"ast\"o, Peter},
     title = {Uniform convexity and associate spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1011--1020},
     year = {2018},
     volume = {68},
     number = {4},
     doi = {10.21136/CMJ.2018.0054-17},
     mrnumber = {3881892},
     zbl = {07031693},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0054-17/}
}
TY  - JOUR
AU  - Harjulehto, Petteri
AU  - Hästö, Peter
TI  - Uniform convexity and associate spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 1011
EP  - 1020
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0054-17/
DO  - 10.21136/CMJ.2018.0054-17
LA  - en
ID  - 10_21136_CMJ_2018_0054_17
ER  - 
%0 Journal Article
%A Harjulehto, Petteri
%A Hästö, Peter
%T Uniform convexity and associate spaces
%J Czechoslovak Mathematical Journal
%D 2018
%P 1011-1020
%V 68
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0054-17/
%R 10.21136/CMJ.2018.0054-17
%G en
%F 10_21136_CMJ_2018_0054_17
Harjulehto, Petteri; Hästö, Peter. Uniform convexity and associate spaces. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 1011-1020. doi: 10.21136/CMJ.2018.0054-17

[1] Adams, R.: Sobolev Spaces. Pure and Applied Mathematics 65, Academic Press, New York (1975). | MR | JFM

[2] Avci, M., Pankov, A.: Multivalued elliptic operators with nonstandard growth. Adv. Nonlinear Anal. 7 (2018), 35-48. | DOI | MR | JFM

[3] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St. Petersbg. Math. J. 27 (2016), 347-379 translation from Algebra Anal. 27 2015 6-50. | DOI | MR | JFM

[4] Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215 (2015), 443-496. | DOI | MR | JFM

[5] Cruz-Uribe, D., Hästö, P.: Extrapolation and interpolation in generalized Orlicz spaces. Trans. Am. Math. Soc. 370 (2018), 4323-4349. | DOI | MR | JFM

[6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017, Springer, Berlin (2011). | DOI | MR | JFM

[7] Fan, X.-L., Guan, C.-X.: Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications. Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 163-175. | DOI | MR | JFM

[8] Gwiazda, P., Wittbold, P., Wróblewska-Kamińska, A., Zimmermann, A.: Renormalized solutions to nonlinear parabolic problems in generalized Musielak-Orlicz spaces. Nonlinear Anal., Theory Methods Appl., Ser. A 129 (2015), 1-36. | DOI | MR | JFM

[9] Harjulehto, P., Hästö, P.: Riesz potential in generalized Orlicz spaces. Forum Math. 29 (2017), 229-244. | DOI | MR

[10] Harjulehto, P., Hästö, P., Klén, R.: Generalized Orlicz spaces and related PDE. Nonlinear Anal., Theory Methods Appl., Ser. A 143 (2016), 155-173. | DOI | MR | JFM

[11] Harjulehto, P., Hästö, P., Toivanen, O.: Hölder regularity of quasiminimizers under generalized growth conditions. Calc. Var. Partial Differ. Equ. 56 (2017), Article No. 2, 26 pages. | DOI | MR | JFM

[12] Hästö, P.: The maximal operator on generalized Orlicz spaces. J. Funct. Anal. 269 (2015), 4038-4048. | DOI | MR | JFM

[13] Hudzik, H.: Uniform convexity of Musielak-Orlicz spaces with Luxemburg's norm. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 23 (1983), 21-32. | MR | JFM

[14] Hudzik, H.: A criterion of uniform convexity of Musielak-Orlicz spaces with Luxemburg norm. Bull. Pol. Acad. Sci., Math. 32 (1984), 303-313. | MR | JFM

[15] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137 (2013), 76-96. | DOI | MR | JFM

[16] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034, Springer, Berlin (1983). | DOI | MR | JFM

[17] Ok, J.: Gradient estimates for elliptic equations with $L^{p(\cdot)}\log L$ growth. Calc. Var. Partial Differ. Equ. 55 (2016), Article No. 26, 30 pages. | DOI | MR | JFM

[18] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces. Pure and Applied Mathematics 146, Marcel Dekker, New York (1991). | MR | JFM

Cité par Sources :