A new proof of the $q$-Dixon identity
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 577-580
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We give a new and elementary proof of Jackson's terminating $q$-analogue of Dixon's identity by using recurrences and induction.
DOI :
10.21136/CMJ.2018.0052-17
Classification :
05A30
Keywords: $q$-binomial coefficient; $q$-Dixon identity; recurrence
Keywords: $q$-binomial coefficient; $q$-Dixon identity; recurrence
@article{10_21136_CMJ_2018_0052_17,
author = {Guo, Victor J. W.},
title = {A new proof of the $q${-Dixon} identity},
journal = {Czechoslovak Mathematical Journal},
pages = {577--580},
publisher = {mathdoc},
volume = {68},
number = {2},
year = {2018},
doi = {10.21136/CMJ.2018.0052-17},
mrnumber = {3819192},
zbl = {06890391},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0052-17/}
}
TY - JOUR AU - Guo, Victor J. W. TI - A new proof of the $q$-Dixon identity JO - Czechoslovak Mathematical Journal PY - 2018 SP - 577 EP - 580 VL - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0052-17/ DO - 10.21136/CMJ.2018.0052-17 LA - en ID - 10_21136_CMJ_2018_0052_17 ER -
Guo, Victor J. W. A new proof of the $q$-Dixon identity. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 577-580. doi: 10.21136/CMJ.2018.0052-17
Cité par Sources :