A new proof of the $q$-Dixon identity
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 577-580 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a new and elementary proof of Jackson's terminating $q$-analogue of Dixon's identity by using recurrences and induction.
We give a new and elementary proof of Jackson's terminating $q$-analogue of Dixon's identity by using recurrences and induction.
DOI : 10.21136/CMJ.2018.0052-17
Classification : 05A30
Keywords: $q$-binomial coefficient; $q$-Dixon identity; recurrence
@article{10_21136_CMJ_2018_0052_17,
     author = {Guo, Victor J. W.},
     title = {A new proof of the $q${-Dixon} identity},
     journal = {Czechoslovak Mathematical Journal},
     pages = {577--580},
     year = {2018},
     volume = {68},
     number = {2},
     doi = {10.21136/CMJ.2018.0052-17},
     mrnumber = {3819192},
     zbl = {06890391},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0052-17/}
}
TY  - JOUR
AU  - Guo, Victor J. W.
TI  - A new proof of the $q$-Dixon identity
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 577
EP  - 580
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0052-17/
DO  - 10.21136/CMJ.2018.0052-17
LA  - en
ID  - 10_21136_CMJ_2018_0052_17
ER  - 
%0 Journal Article
%A Guo, Victor J. W.
%T A new proof of the $q$-Dixon identity
%J Czechoslovak Mathematical Journal
%D 2018
%P 577-580
%V 68
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0052-17/
%R 10.21136/CMJ.2018.0052-17
%G en
%F 10_21136_CMJ_2018_0052_17
Guo, Victor J. W. A new proof of the $q$-Dixon identity. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 577-580. doi: 10.21136/CMJ.2018.0052-17

[1] Andrews, G. E.: The Theory of Partitions. Cambridge University Press, Cambridge (1998). | MR | JFM

[2] Bailey, W. N.: A note on certain $q$-identities. Q. J. Math., Oxf. Ser. 12 (1941), 173-175. | DOI | MR | JFM

[3] Dixon, A. C.: Summation of a certain series. London M. S. Proc. 35 (1903), 284-289. | DOI | MR | JFM

[4] Ekhad, S. B.: A very short proof of Dixon's theorem. J. Comb. Theory, Ser. A 54 (1990), 141-142. | DOI | MR | JFM

[5] Gessel, I., Stanton, D.: Short proofs of Saalschütz and Dixon's theorems. J. Comb. Theory Ser. A 38 (1985), 87-90. | DOI | MR | JFM

[6] Guo, V. J. W.: A simple proof of Dixon's identity. Discrete Math. 268 (2003), 309-310. | DOI | MR | JFM

[7] Guo, V. J. W., Zeng, J.: A short proof of the q-Dixon identity. Discrete Math. 296 (2005), 259-261. | DOI | MR | JFM

[8] Jackson, F. H.: Certain $q$-identities. Q. J. Math., Oxford Ser. 12 (1941), 167-172. | DOI | MR | JFM

[9] Koepf, W.: Hypergeometric Summation---An Algorithmic Approach to Summation and Special Function Identities. Universitext, Springer, London (2014). | DOI | MR | JFM

[10] Mikić, J.: A proof of a famous identity concerning the convolution of the central binomial coefficients. J. Integer Seq. 19 (2016), Article ID 16.6.6, 10 pages. | MR | JFM

[11] Mikić, J.: A proof of Dixon's identity. J. Integer Seq. 19 (2016), Article ID 16.5.3, 5 pages. | MR | JFM

[12] Petkovšek, M., Wilf, H. S., Zeilberger, D.: A = B. With foreword by Donald E. Knuth. A. K. Peters, Wellesley (1996). | MR | JFM

[13] Zeilberger, D.: A $q$-Foata proof of the $q$-Saalschütz identity. Eur. J. Comb. 8 (1987), 461-463. | DOI | MR | JFM

Cité par Sources :