A new proof of the $q$-Dixon identity
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 577-580.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give a new and elementary proof of Jackson's terminating $q$-analogue of Dixon's identity by using recurrences and induction.
DOI : 10.21136/CMJ.2018.0052-17
Classification : 05A30
Keywords: $q$-binomial coefficient; $q$-Dixon identity; recurrence
@article{10_21136_CMJ_2018_0052_17,
     author = {Guo, Victor J. W.},
     title = {A new proof of the $q${-Dixon} identity},
     journal = {Czechoslovak Mathematical Journal},
     pages = {577--580},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2018},
     doi = {10.21136/CMJ.2018.0052-17},
     mrnumber = {3819192},
     zbl = {06890391},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0052-17/}
}
TY  - JOUR
AU  - Guo, Victor J. W.
TI  - A new proof of the $q$-Dixon identity
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 577
EP  - 580
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0052-17/
DO  - 10.21136/CMJ.2018.0052-17
LA  - en
ID  - 10_21136_CMJ_2018_0052_17
ER  - 
%0 Journal Article
%A Guo, Victor J. W.
%T A new proof of the $q$-Dixon identity
%J Czechoslovak Mathematical Journal
%D 2018
%P 577-580
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0052-17/
%R 10.21136/CMJ.2018.0052-17
%G en
%F 10_21136_CMJ_2018_0052_17
Guo, Victor J. W. A new proof of the $q$-Dixon identity. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 2, pp. 577-580. doi : 10.21136/CMJ.2018.0052-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0052-17/

Cité par Sources :