Some Berezin number inequalities for operator matrices
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 997-1009
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Berezin symbol $\tilde {A}$ of an operator $A$ acting on the reproducing kernel Hilbert space ${\mathcal H}={\mathcal H}(\Omega )$ over some (nonempty) set is defined by $\tilde {A}(\lambda )=\langle A\hat {k}_{\lambda },\hat {k}_{\lambda }\rangle ,$ $\lambda \in \Omega $, where $\hat {k}_{\lambda }={{k}_{\lambda }}/{\|{k}_{\lambda }\|}$ is the normalized reproducing kernel of ${\mathcal H}$. The Berezin number of the operator $A$ is defined by ${\bf ber}(A)=\sup _{\lambda \in \Omega }|\tilde {A}(\lambda )|=\sup _{\lambda \in \Omega }|\langle A\hat {k}_{\lambda },\hat {k}_{\lambda }\rangle |$. Moreover, ${\bf ber}(A)\leq w(A)$ (numerical radius). We present some Berezin number inequalities. Among other inequalities, it is shown that if ${\bf T}=\left [\smallmatrix A\\ C \endmatrix \right ]\in {\mathbb B}({\mathcal H(\Omega _1)}\oplus {\mathcal H(\Omega _2)})$, then $$ {\bf ber}({\bf T}) \leq \frac {1}{2}({\bf ber}(A)+{\bf ber}(D))+\frac {1}{2}\sqrt {({\bf ber}(A)- {\bf ber}(D))^2+(\|B\|+\|C\|)^2}. $$
The Berezin symbol $\tilde {A}$ of an operator $A$ acting on the reproducing kernel Hilbert space ${\mathcal H}={\mathcal H}(\Omega )$ over some (nonempty) set is defined by $\tilde {A}(\lambda )=\langle A\hat {k}_{\lambda },\hat {k}_{\lambda }\rangle ,$ $\lambda \in \Omega $, where $\hat {k}_{\lambda }={{k}_{\lambda }}/{\|{k}_{\lambda }\|}$ is the normalized reproducing kernel of ${\mathcal H}$. The Berezin number of the operator $A$ is defined by ${\bf ber}(A)=\sup _{\lambda \in \Omega }|\tilde {A}(\lambda )|=\sup _{\lambda \in \Omega }|\langle A\hat {k}_{\lambda },\hat {k}_{\lambda }\rangle |$. Moreover, ${\bf ber}(A)\leq w(A)$ (numerical radius). We present some Berezin number inequalities. Among other inequalities, it is shown that if ${\bf T}=\left [\smallmatrix A\\ C \endmatrix \right ]\in {\mathbb B}({\mathcal H(\Omega _1)}\oplus {\mathcal H(\Omega _2)})$, then $$ {\bf ber}({\bf T}) \leq \frac {1}{2}({\bf ber}(A)+{\bf ber}(D))+\frac {1}{2}\sqrt {({\bf ber}(A)- {\bf ber}(D))^2+(\|B\|+\|C\|)^2}. $$
DOI : 10.21136/CMJ.2018.0048-17
Classification : 15A60, 30E20, 47A12, 47A30, 47B15, 47B20
Keywords: reproducing kernel; Berezin number; numerical radius; operator matrix
@article{10_21136_CMJ_2018_0048_17,
     author = {Bakherad, Mojtaba},
     title = {Some {Berezin} number inequalities for operator matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {997--1009},
     year = {2018},
     volume = {68},
     number = {4},
     doi = {10.21136/CMJ.2018.0048-17},
     mrnumber = {3881891},
     zbl = {07031692},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0048-17/}
}
TY  - JOUR
AU  - Bakherad, Mojtaba
TI  - Some Berezin number inequalities for operator matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 997
EP  - 1009
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0048-17/
DO  - 10.21136/CMJ.2018.0048-17
LA  - en
ID  - 10_21136_CMJ_2018_0048_17
ER  - 
%0 Journal Article
%A Bakherad, Mojtaba
%T Some Berezin number inequalities for operator matrices
%J Czechoslovak Mathematical Journal
%D 2018
%P 997-1009
%V 68
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0048-17/
%R 10.21136/CMJ.2018.0048-17
%G en
%F 10_21136_CMJ_2018_0048_17
Bakherad, Mojtaba. Some Berezin number inequalities for operator matrices. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 997-1009. doi: 10.21136/CMJ.2018.0048-17

[1] Abu-Omar, A., Kittaneh, F.: Numerical radius inequalities for $n\times n$ operator matrices. Linear Algebra Appl. 468 (2015), 18-26. | DOI | MR | JFM

[2] Berezin, F. A.: Covariant and contravariant symbols of operators. Math. USSR, Izv. 6(1972) (1973), 1117-1151. English. Russian original translation from Russian Izv. Akad. Nauk SSSR, Ser. Mat. 36 1972 1134-1167. | DOI | MR | JFM

[3] Berezin, F. A.: Quantization. Math. USSR, Izv. 8 (1974), 1109-1165. English. Russian original translation from Izv. Akad. Nauk SSSR, Ser. Mat. 38 1974 1116-1175. | DOI | MR | JFM

[4] Gustafson, K. E., Rao, D. K. M.: Numerical Range. The Field of Values of Linear Operators and Matrices. Universitext, Springer, New York (1997). | DOI | MR | JFM

[5] Hajmohamadi, M., Lashkaripour, R., Bakherad, M.: Some generalizations of numerical radius on off-diagonal part of $2\times 2$ operator matrices. To appear in J. Math. Inequal. Available at ArXiv 1706.05040 [math.FA]. | MR

[6] Halmos, P. R.: A Hilbert Space Problem Book. Graduate Texts in Mathematics 19, Encyclopedia of Mathematics and Its Applications 17, Springer, New York (1982). | DOI | MR | JFM

[7] Horn, R. A., Johnson, C. R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991). | DOI | MR | JFM

[8] Hou, J. C., Du, H. K.: Norm inequalities of positive operator matrices. Integral Equations Operator Theory 22 (1995), 281-294. | DOI | MR | JFM

[9] Karaev, M. T.: On the Berezin symbol. J. Math. Sci., New York 115 (2003), 2135-2140. English. Russian original translation from Zap. Nauchn. Semin. POMI 270 2000 80-89. | DOI | MR | JFM

[10] Karaev, M. T.: Functional analysis proofs of Abel's theorems. Proc. Am. Math. Soc. 132 (2004), 2327-2329. | DOI | MR | JFM

[11] Karaev, M. T.: Berezin symbol and invertibility of operators on the functional Hilbert spaces. J. Funct. Anal. 238 (2006), 181-192. | DOI | MR | JFM

[12] Karaev, M. T., Saltan, S.: Some results on Berezin symbols. Complex Variables, Theory Appl. 50 (2005), 185-193. | DOI | MR | JFM

[13] Kittaneh, F.: Notes on some inequalitis for Hilbert space operators. Publ. Res. Inst. Math. Sci. 24 (1988), 283-293. | DOI | MR | JFM

[14] Nordgren, E., Rosenthal, P.: Boundary values of Berezin symbols. Nonselfadjoint Operators and Related Topics A. Feintuch et al. Oper. Theory, Adv. Appl. 73, Birkhäuser, Basel (1994), 362-368. | DOI | MR | JFM

[15] Sheikhhosseini, A., Moslehian, M. S., Shebrawi, K.: Inequalities for generalized Euclidean operator radius via Young's inequality. J. Math. Anal. Appl. 445 (2017), 1516-1529. | DOI | MR | JFM

[16] Zhu, K.: Operator Theory in Function Spaces. Pure and Applied Mathematics 139, Marcel Dekker, New York (1990). | MR | JFM

Cité par Sources :