Some Berezin number inequalities for operator matrices
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 997-1009.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The Berezin symbol $\tilde {A}$ of an operator $A$ acting on the reproducing kernel Hilbert space ${\mathcal H}={\mathcal H}(\Omega )$ over some (nonempty) set is defined by $\tilde {A}(\lambda )=\langle A\hat {k}_{\lambda },\hat {k}_{\lambda }\rangle ,$ $\lambda \in \Omega $, where $\hat {k}_{\lambda }={{k}_{\lambda }}/{\|{k}_{\lambda }\|}$ is the normalized reproducing kernel of ${\mathcal H}$. The Berezin number of the operator $A$ is defined by ${\bf ber}(A)=\sup _{\lambda \in \Omega }|\tilde {A}(\lambda )|=\sup _{\lambda \in \Omega }|\langle A\hat {k}_{\lambda },\hat {k}_{\lambda }\rangle |$. Moreover, ${\bf ber}(A)\leq w(A)$ (numerical radius). We present some Berezin number inequalities. Among other inequalities, it is shown that if ${\bf T}=\left [\smallmatrix A\\ C \endmatrix \right ]\in {\mathbb B}({\mathcal H(\Omega _1)}\oplus {\mathcal H(\Omega _2)})$, then $$ {\bf ber}({\bf T}) \leq \frac {1}{2}({\bf ber}(A)+{\bf ber}(D))+\frac {1}{2}\sqrt {({\bf ber}(A)- {\bf ber}(D))^2+(\|B\|+\|C\|)^2}. $$
DOI : 10.21136/CMJ.2018.0048-17
Classification : 15A60, 30E20, 47A12, 47A30, 47B15, 47B20
Keywords: reproducing kernel; Berezin number; numerical radius; operator matrix
@article{10_21136_CMJ_2018_0048_17,
     author = {Bakherad, Mojtaba},
     title = {Some {Berezin} number inequalities for operator matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {997--1009},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2018},
     doi = {10.21136/CMJ.2018.0048-17},
     mrnumber = {3881891},
     zbl = {07031692},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0048-17/}
}
TY  - JOUR
AU  - Bakherad, Mojtaba
TI  - Some Berezin number inequalities for operator matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 997
EP  - 1009
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0048-17/
DO  - 10.21136/CMJ.2018.0048-17
LA  - en
ID  - 10_21136_CMJ_2018_0048_17
ER  - 
%0 Journal Article
%A Bakherad, Mojtaba
%T Some Berezin number inequalities for operator matrices
%J Czechoslovak Mathematical Journal
%D 2018
%P 997-1009
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0048-17/
%R 10.21136/CMJ.2018.0048-17
%G en
%F 10_21136_CMJ_2018_0048_17
Bakherad, Mojtaba. Some Berezin number inequalities for operator matrices. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 997-1009. doi : 10.21136/CMJ.2018.0048-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0048-17/

Cité par Sources :