Necessary and sufficient conditions for the $L^1$-convergence of double Fourier series
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 987-996
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We extend the results of paper of F. Móricz (2010), where necessary conditions were given for the $L^1$-convergence of double Fourier series. We also give necessary and sufficient conditions for the $L^1$-convergence under appropriate assumptions.
DOI :
10.21136/CMJ.2018.0043-17
Classification :
42B05, 42B99
Keywords: double Fourier series; $L^1$-convergence; logarithm bound variation double sequences
Keywords: double Fourier series; $L^1$-convergence; logarithm bound variation double sequences
@article{10_21136_CMJ_2018_0043_17,
author = {K\'orus, P\'eter},
title = {Necessary and sufficient conditions for the $L^1$-convergence of double {Fourier} series},
journal = {Czechoslovak Mathematical Journal},
pages = {987--996},
publisher = {mathdoc},
volume = {68},
number = {4},
year = {2018},
doi = {10.21136/CMJ.2018.0043-17},
mrnumber = {3881890},
zbl = {07031691},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0043-17/}
}
TY - JOUR AU - Kórus, Péter TI - Necessary and sufficient conditions for the $L^1$-convergence of double Fourier series JO - Czechoslovak Mathematical Journal PY - 2018 SP - 987 EP - 996 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0043-17/ DO - 10.21136/CMJ.2018.0043-17 LA - en ID - 10_21136_CMJ_2018_0043_17 ER -
%0 Journal Article %A Kórus, Péter %T Necessary and sufficient conditions for the $L^1$-convergence of double Fourier series %J Czechoslovak Mathematical Journal %D 2018 %P 987-996 %V 68 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0043-17/ %R 10.21136/CMJ.2018.0043-17 %G en %F 10_21136_CMJ_2018_0043_17
Kórus, Péter. Necessary and sufficient conditions for the $L^1$-convergence of double Fourier series. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 987-996. doi: 10.21136/CMJ.2018.0043-17
Cité par Sources :