Necessary and sufficient conditions for the $L^1$-convergence of double Fourier series
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 987-996.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We extend the results of paper of F. Móricz (2010), where necessary conditions were given for the $L^1$-convergence of double Fourier series. We also give necessary and sufficient conditions for the $L^1$-convergence under appropriate assumptions.
DOI : 10.21136/CMJ.2018.0043-17
Classification : 42B05, 42B99
Keywords: double Fourier series; $L^1$-convergence; logarithm bound variation double sequences
@article{10_21136_CMJ_2018_0043_17,
     author = {K\'orus, P\'eter},
     title = {Necessary and sufficient conditions for the $L^1$-convergence of double {Fourier} series},
     journal = {Czechoslovak Mathematical Journal},
     pages = {987--996},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2018},
     doi = {10.21136/CMJ.2018.0043-17},
     mrnumber = {3881890},
     zbl = {07031691},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0043-17/}
}
TY  - JOUR
AU  - Kórus, Péter
TI  - Necessary and sufficient conditions for the $L^1$-convergence of double Fourier series
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 987
EP  - 996
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0043-17/
DO  - 10.21136/CMJ.2018.0043-17
LA  - en
ID  - 10_21136_CMJ_2018_0043_17
ER  - 
%0 Journal Article
%A Kórus, Péter
%T Necessary and sufficient conditions for the $L^1$-convergence of double Fourier series
%J Czechoslovak Mathematical Journal
%D 2018
%P 987-996
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0043-17/
%R 10.21136/CMJ.2018.0043-17
%G en
%F 10_21136_CMJ_2018_0043_17
Kórus, Péter. Necessary and sufficient conditions for the $L^1$-convergence of double Fourier series. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 987-996. doi : 10.21136/CMJ.2018.0043-17. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0043-17/

Cité par Sources :