Generalized Morrey spaces associated to Schrödinger operators and applications
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 953-986
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We first introduce new weighted Morrey spaces related to certain non-negative potentials satisfying the reverse Hölder inequality. Then we establish the weighted strong-type and weak-type estimates for the Riesz transforms and fractional integrals associated to Schrödinger operators. As an application, we prove the Calderón-Zygmund estimates for solutions to Schrödinger equation on these new spaces. Our results cover a number of known results.
We first introduce new weighted Morrey spaces related to certain non-negative potentials satisfying the reverse Hölder inequality. Then we establish the weighted strong-type and weak-type estimates for the Riesz transforms and fractional integrals associated to Schrödinger operators. As an application, we prove the Calderón-Zygmund estimates for solutions to Schrödinger equation on these new spaces. Our results cover a number of known results.
DOI : 10.21136/CMJ.2018.0039-17
Classification : 42B20, 42B35
Keywords: Morrey space; Schrödinger operator; Riesz transform; fractional integral; Calderón-Zygmund estimate
@article{10_21136_CMJ_2018_0039_17,
     author = {Trong, Nguyen Ngoc and Truong, Le Xuan},
     title = {Generalized {Morrey} spaces associated to {Schr\"odinger} operators and applications},
     journal = {Czechoslovak Mathematical Journal},
     pages = {953--986},
     year = {2018},
     volume = {68},
     number = {4},
     doi = {10.21136/CMJ.2018.0039-17},
     mrnumber = {3881889},
     zbl = {07031690},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0039-17/}
}
TY  - JOUR
AU  - Trong, Nguyen Ngoc
AU  - Truong, Le Xuan
TI  - Generalized Morrey spaces associated to Schrödinger operators and applications
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 953
EP  - 986
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0039-17/
DO  - 10.21136/CMJ.2018.0039-17
LA  - en
ID  - 10_21136_CMJ_2018_0039_17
ER  - 
%0 Journal Article
%A Trong, Nguyen Ngoc
%A Truong, Le Xuan
%T Generalized Morrey spaces associated to Schrödinger operators and applications
%J Czechoslovak Mathematical Journal
%D 2018
%P 953-986
%V 68
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0039-17/
%R 10.21136/CMJ.2018.0039-17
%G en
%F 10_21136_CMJ_2018_0039_17
Trong, Nguyen Ngoc; Truong, Le Xuan. Generalized Morrey spaces associated to Schrödinger operators and applications. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 953-986. doi: 10.21136/CMJ.2018.0039-17

[1] Adams, D. R., Xiao, J.: Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ. Math. J. 53 (2004), 1629-1663. | DOI | MR | JFM

[2] Alvarez, J., Bagby, R. J., Kurtz, D. S., Pérez, C.: Weighted estimates for commutators of linear operators. Stud. Math. 104 (1993), 195-209. | DOI | MR | JFM

[3] Bongioanni, B., Harboure, E., Salinas, O.: Riesz transforms related to Schrödinger operators acting on BMO type spaces. J. Math. Anal. Appl. 357 (2009), 115-131. | DOI | MR | JFM

[4] Bongioanni, B., Harboure, E., Salinas, O.: Classes of weights related to Schrödinger operators. J. Math. Anal. Appl. 373 (2011), 563-579. | DOI | MR | JFM

[5] Bui, T. A.: The weighted norm inequalities for Riesz transforms of magnetic Schrödinger operators. Differ. Integral Equ. 23 (2010), 811-826. | MR | JFM

[6] Bui, T. A.: Weighted estimates for commutators of some singular integrals related to Schrödinger operators. Bull. Sci. Math. 138 (2014), 270-292. | DOI | MR | JFM

[7] Coifman, R. R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Stud. Math. 51 (1974), 241-250. | DOI | MR | JFM

[8] Coulhon, T., Duong, X. T.: Riesz transforms for $ 1\leq p\leq 2$. Trans. Am. Math. Soc. 351 (1999), 1151-1169. | DOI | MR | JFM

[9] Cruz-Uribe, D., Fiorenza, A.: Weighted endpoint estimates for commutators of fractional integrals. Czech. Math. J. 57 (2007), 153-160. | DOI | MR | JFM

[10] Duong, X. T., Xiao, J., Yan, L.: Old and new Morrey spaces with heat kernel bounds. J. Fourier Anal. Appl. 13 (2007), 87-111. | DOI | MR | JFM

[11] Dziubański, J., Garrigós, G., Martínez, T., Torrea, J. L., Zienkiewicz, J.: BMO spaces related to Schrödinger operators with potentials satisfying reverse Hölder inequality. Mat. Z. 249 (2005), 329-356. | DOI | MR | JFM

[12] Dziubański, J., Zienkiewicz, J.: $H^{p}$ spaces for Schrödinger operators. Fourier Analysis and Related Topics W. Żelazko Banach Center Publications 56, Polish Academy of Sciences, Institute of Mathematics, Warsaw (2002), 45-53. | DOI | MR | JFM

[13] Feuto, J., Fofana, I., Koua, K.: Spaces of functions with integrable fractional mean on locally compact groups. Afr. Mat., Sér. III French 15 (2003), 73-91. | MR | JFM

[14] Feuto, J., Fofana, I., Koua, K.: Integrable fractional mean functions on spaces of homogeneous type. Afr. Diaspora J. Math. 9 (2010), 8-30. | MR | JFM

[15] Fofana, I.: Study of a class of function spaces containing Lorentz spaces. French Afr. Mat. (2) 1 (1988), 29-50. | MR | JFM

[16] Guo, Z., Li, P., Peng, L.: $L^{p}$ boundedness of commutators of Riesz transforms associated to Schrödinger operator. J. Math. Anal. Appl. 341 (2008), 421-432. | DOI | MR | JFM

[17] John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14 (1961), 415-426. | DOI | MR | JFM

[18] Johnson, R., Neugebauer, C. J.: Change of variable results for $A_{p}$- and reverse Hölder $RH_{r}$-classes. Trans. Am. Math. Soc. 328 (1991), 639-666. | DOI | MR | JFM

[19] Komori, Y., Shirai, S.: Weighted Morrey spaces and a singular integral operator. Math. Nachr. 282 (2009), 219-231. | DOI | MR | JFM

[20] Ly, F. K.: Second order Riesz transforms associated to the Schrödinger operator for $p\leq 1$. J. Math. Anal. Appl. 410 (2014), 391-402. | DOI | MR | JFM

[21] Morrey, C.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43 (1938), 126-166. | DOI | MR | JFM

[22] Muckenhoupt, B., Wheeden, R. L.: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192 (1974), 261-274. | DOI | MR | JFM

[23] Peetre, J.: On the theory of $\mathcal L^{p,\lambda}$ spaces. J. Funct. Anal. 4 (1969), 71-87. | DOI | MR | JFM

[24] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces. Pure and Applied Mathematics 146, Marcel Dekker, New York (1991). | MR | JFM

[25] Samko, N.: Weighted Hardy and singular operators in Morrey spaces. J. Math. Anal. Appl. 350 (2009), 56-72. | DOI | MR | JFM

[26] Segovia, C., Torrea, J. L.: Weighted inequalities for commutators of fractional and singular integrals. Publ. Mat., Barc. 35 (1991), 209-235. | DOI | MR | JFM

[27] Shen, Z.: $L^{p}$ estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier 45 (1995), 513-546. | DOI | MR | JFM

[28] Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series 43, Princeton University Press, Princeton (1993). | MR | JFM

[29] Tang, L.: Weighted norm inequalities for Schrödinger type operators. Forum Math. 27 (2015), 2491-2532. | DOI | MR | JFM

[30] Tang, L., Dong, J.: Boundedness for some Schrödinger type operators on Morrey spaces related to certain nonnegative potentials. J. Math. Anal. Appl. 355 (2009), 101-109. | DOI | MR | JFM

[31] Wang, H.: Boundedness of fractional integral operators with rough kernels on weighted Morrey spaces. Acta Math. Sin., Chin. Ser. Chinese. English summary 56 (2013), 175-186. | MR | JFM

[32] Xiao, J.: Homothetic variant of fractional Sobolev space with application to Navier-Stokes system. Dyn. Partial Differ. Equ. 4 (2007), 227-245. | DOI | MR | JFM

[33] Zhang, P.: Weighted endpoint estimates for commutators of Marcinkiewicz integrals. Acta Math. Sin., Engl. Ser. 26 (2010), 1709-1722. | DOI | MR | JFM

[34] Zhong, J.: Harmonic analysis for some Schrödinger type operators. Ph.D. Thesis, Princeton University (1993). | MR

Cité par Sources :