On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2$
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 943-951
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $F$ be a closed subset of $\mathbb R^n$ and let $P(x) $ denote the metric projection (closest point mapping) of $x\in \mathbb R^n$ onto $F$ in $l^p$-norm. A classical result of Asplund states that $P$ is (Fréchet) differentiable almost everywhere (a.e.) in $\mathbb R^n$ in the Euclidean case $p=2$. We consider the case $2$ and prove that the $i$th component $P_i(x)$ of $P(x)$ is differentiable a.e.\ if $P_i(x)\neq x_i$ and satisfies Hölder condition of order $1/(p-1)$ if $P_i(x)=x_i$.
Let $F$ be a closed subset of $\mathbb R^n$ and let $P(x) $ denote the metric projection (closest point mapping) of $x\in \mathbb R^n$ onto $F$ in $l^p$-norm. A classical result of Asplund states that $P$ is (Fréchet) differentiable almost everywhere (a.e.) in $\mathbb R^n$ in the Euclidean case $p=2$. We consider the case $2$ and prove that the $i$th component $P_i(x)$ of $P(x)$ is differentiable a.e.\ if $P_i(x)\neq x_i$ and satisfies Hölder condition of order $1/(p-1)$ if $P_i(x)=x_i$.
DOI :
10.21136/CMJ.2018.0038-17
Classification :
26E25, 46B20, 49J50
Keywords: normed space; uniform convexity; closed set; metric projection; $l^p$-space; Fréchet differential; Lipschitz condition
Keywords: normed space; uniform convexity; closed set; metric projection; $l^p$-space; Fréchet differential; Lipschitz condition
@article{10_21136_CMJ_2018_0038_17,
author = {Sj\"odin, Tord},
title = {On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2<p<\infty $},
journal = {Czechoslovak Mathematical Journal},
pages = {943--951},
year = {2018},
volume = {68},
number = {4},
doi = {10.21136/CMJ.2018.0038-17},
mrnumber = {3881888},
zbl = {07031689},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0038-17/}
}
TY - JOUR AU - Sjödin, Tord TI - On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2 JO - Czechoslovak Mathematical Journal PY - 2018 SP - 943 EP - 951 VL - 68 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0038-17/ DO - 10.21136/CMJ.2018.0038-17 LA - en ID - 10_21136_CMJ_2018_0038_17 ER -
%0 Journal Article %A Sjödin, Tord %T On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2 %J Czechoslovak Mathematical Journal %D 2018 %P 943-951 %V 68 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0038-17/ %R 10.21136/CMJ.2018.0038-17 %G en %F 10_21136_CMJ_2018_0038_17
Sjödin, Tord. On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2
Cité par Sources :