On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2$
Czechoslovak Mathematical Journal, Tome 68 (2018) no. 4, pp. 943-951 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $F$ be a closed subset of $\mathbb R^n$ and let $P(x) $ denote the metric projection (closest point mapping) of $x\in \mathbb R^n$ onto $F$ in $l^p$-norm. A classical result of Asplund states that $P$ is (Fréchet) differentiable almost everywhere (a.e.) in $\mathbb R^n$ in the Euclidean case $p=2$. We consider the case $2
Let $F$ be a closed subset of $\mathbb R^n$ and let $P(x) $ denote the metric projection (closest point mapping) of $x\in \mathbb R^n$ onto $F$ in $l^p$-norm. A classical result of Asplund states that $P$ is (Fréchet) differentiable almost everywhere (a.e.) in $\mathbb R^n$ in the Euclidean case $p=2$. We consider the case $2$ and prove that the $i$th component $P_i(x)$ of $P(x)$ is differentiable a.e.\ if $P_i(x)\neq x_i$ and satisfies Hölder condition of order $1/(p-1)$ if $P_i(x)=x_i$.
DOI : 10.21136/CMJ.2018.0038-17
Classification : 26E25, 46B20, 49J50
Keywords: normed space; uniform convexity; closed set; metric projection; $l^p$-space; Fréchet differential; Lipschitz condition
@article{10_21136_CMJ_2018_0038_17,
     author = {Sj\"odin, Tord},
     title = {On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2<p<\infty $},
     journal = {Czechoslovak Mathematical Journal},
     pages = {943--951},
     year = {2018},
     volume = {68},
     number = {4},
     doi = {10.21136/CMJ.2018.0038-17},
     mrnumber = {3881888},
     zbl = {07031689},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0038-17/}
}
TY  - JOUR
AU  - Sjödin, Tord
TI  - On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2
JO  - Czechoslovak Mathematical Journal
PY  - 2018
SP  - 943
EP  - 951
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0038-17/
DO  - 10.21136/CMJ.2018.0038-17
LA  - en
ID  - 10_21136_CMJ_2018_0038_17
ER  - 
%0 Journal Article
%A Sjödin, Tord
%T On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2
%J Czechoslovak Mathematical Journal
%D 2018
%P 943-951
%V 68
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0038-17/
%R 10.21136/CMJ.2018.0038-17
%G en
%F 10_21136_CMJ_2018_0038_17
Sjödin, Tord. On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2
                      
                    

[1] Abatzoglou, T.: Finite-dimensional Banach spaces with a.e. differentiable metric projection. Proc. Am. Math. Soc. 78 (1980), 492-496. | DOI | MR | JFM

[2] Asplund, E.: Differentiability of the metric projection in finite dimensional metric spaces. Proc. Am. Math. Soc. 38 (1973), 218-219. | DOI | MR | JFM

[3] Clarkson, J.: Uniformly convex spaces. Trans. Am. Math. Soc. 40 (1936), 396-414. | DOI | MR | JFM

[4] Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153, Springer, Berlin (1969). | MR | JFM

[5] Fitzpatrick, S., Phelps, R. R.: Differentiability of metric projection in Hilbert space. Trans. Am. Math. Soc. 270 (1982), 483-501. | DOI | MR | JFM

[6] Hanner, O.: On the uniform convexity of $L^p$ and $l^p$. Ark. Mat. 3 (1956), 239-244. | DOI | MR | JFM

[7] Kruskal, J. B.: Two convex counterexamples: A discontinuous envelope function and a non-differentiable nearest point mapping. Proc. Am. Math. Soc. 23 (1969), 697-703. | DOI | MR | JFM

[8] Phelps, R. R.: Convex sets and nearest points. Proc. Am. Math. Soc. 8 (1957), 790-797. | DOI | MR | JFM

[9] Phelps, R. R.: Convex sets and nearest points II. Proc. Am. Math. Soc. 9 (1958), 867-873. | DOI | MR | JFM

[10] Rešetnyak, Ju. G.: Generalized derivatives and differentiability almost everywhere. Mat. Sb., N. Ser. 75(117) (1968), 323-334 Russian. | MR | JFM

[11] Shapiro, A.: Differentiability properties of metric projection onto convex sets. J. Optim. Theory Appl. 169 (2016), 953-964. | DOI | MR | JFM

[12] Zajíček, L.: On differentiation of metric projections in finite dimensional Banach spaces. Czech. Math. J. 33 (1983), 325-336. | MR | JFM

Cité par Sources :