Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_CMJ_2018_0038_17, author = {Sj\"odin, Tord}, title = {On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2<p<\infty $}, journal = {Czechoslovak Mathematical Journal}, pages = {943--951}, publisher = {mathdoc}, volume = {68}, number = {4}, year = {2018}, doi = {10.21136/CMJ.2018.0038-17}, mrnumber = {3881888}, zbl = {07031689}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0038-17/} }
TY - JOUR AU - Sjödin, Tord TI - On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2 JO - Czechoslovak Mathematical Journal PY - 2018 SP - 943 EP - 951 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0038-17/ DO - 10.21136/CMJ.2018.0038-17 LA - en ID - 10_21136_CMJ_2018_0038_17 ER -
%0 Journal Article %A Sjödin, Tord %T On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2 %J Czechoslovak Mathematical Journal %D 2018 %P 943-951 %V 68 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0038-17/ %R 10.21136/CMJ.2018.0038-17 %G en %F 10_21136_CMJ_2018_0038_17
Sjödin, Tord. On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2
Cité par Sources :