Keywords: normed space; uniform convexity; closed set; metric projection; $l^p$-space; Fréchet differential; Lipschitz condition
@article{10_21136_CMJ_2018_0038_17,
author = {Sj\"odin, Tord},
title = {On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2<p<\infty $},
journal = {Czechoslovak Mathematical Journal},
pages = {943--951},
year = {2018},
volume = {68},
number = {4},
doi = {10.21136/CMJ.2018.0038-17},
mrnumber = {3881888},
zbl = {07031689},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0038-17/}
}
TY - JOUR AU - Sjödin, Tord TI - On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2 JO - Czechoslovak Mathematical Journal PY - 2018 SP - 943 EP - 951 VL - 68 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0038-17/ DO - 10.21136/CMJ.2018.0038-17 LA - en ID - 10_21136_CMJ_2018_0038_17 ER -
%0 Journal Article %A Sjödin, Tord %T On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2 %J Czechoslovak Mathematical Journal %D 2018 %P 943-951 %V 68 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2018.0038-17/ %R 10.21136/CMJ.2018.0038-17 %G en %F 10_21136_CMJ_2018_0038_17
Sjödin, Tord. On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2
[1] Abatzoglou, T.: Finite-dimensional Banach spaces with a.e. differentiable metric projection. Proc. Am. Math. Soc. 78 (1980), 492-496. | DOI | MR | JFM
[2] Asplund, E.: Differentiability of the metric projection in finite dimensional metric spaces. Proc. Am. Math. Soc. 38 (1973), 218-219. | DOI | MR | JFM
[3] Clarkson, J.: Uniformly convex spaces. Trans. Am. Math. Soc. 40 (1936), 396-414. | DOI | MR | JFM
[4] Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153, Springer, Berlin (1969). | MR | JFM
[5] Fitzpatrick, S., Phelps, R. R.: Differentiability of metric projection in Hilbert space. Trans. Am. Math. Soc. 270 (1982), 483-501. | DOI | MR | JFM
[6] Hanner, O.: On the uniform convexity of $L^p$ and $l^p$. Ark. Mat. 3 (1956), 239-244. | DOI | MR | JFM
[7] Kruskal, J. B.: Two convex counterexamples: A discontinuous envelope function and a non-differentiable nearest point mapping. Proc. Am. Math. Soc. 23 (1969), 697-703. | DOI | MR | JFM
[8] Phelps, R. R.: Convex sets and nearest points. Proc. Am. Math. Soc. 8 (1957), 790-797. | DOI | MR | JFM
[9] Phelps, R. R.: Convex sets and nearest points II. Proc. Am. Math. Soc. 9 (1958), 867-873. | DOI | MR | JFM
[10] Rešetnyak, Ju. G.: Generalized derivatives and differentiability almost everywhere. Mat. Sb., N. Ser. 75(117) (1968), 323-334 Russian. | MR | JFM
[11] Shapiro, A.: Differentiability properties of metric projection onto convex sets. J. Optim. Theory Appl. 169 (2016), 953-964. | DOI | MR | JFM
[12] Zajíček, L.: On differentiation of metric projections in finite dimensional Banach spaces. Czech. Math. J. 33 (1983), 325-336. | MR | JFM
Cité par Sources :